On the interface between lattice results and χPT

H. Leutwyler University of Bern

QCD: The Modern View of the Strong Interactions October 5, 2009, Academy of Sciences, Berlin

Standard Model at low energies

- Low energies ($E \ll M_W$): weak interaction is frozen
- ⇒ Standard Model reduces to QCD + QED
- Lagrangian only involves g_s, θ, e , fermion masses
- ⇒ Precision theory for cold matter ($T \ll M_W$), size and structure of atoms, solids, etc.
- QED is infrared stable, characterized by pure number, which happens to be small, 1/137
- \Rightarrow QED can be accounted for with perturbation theory
- Hadrons at low energies: SM = QCD + corrections

Pièce de résistance: QCD

- ∃ many models that resemble QCD: instantons, monopoles, bags, superconductivity, gluonic strings, linear σ model, hidden gauge, NJL, AdS/CFT, but ...
- Nonperturbative methods needed
- \Rightarrow Progress in understanding is slow
- Model independent methods:
 - Numerical simulation on a lattice
 - Sum rules, dispersion relations
 - Effective field theory (χ PT)

Hidden symmetries in particle physics

Already in 1960, Nambu realized that

- 1. $SU(2)_L \times SU(2)_R$ is an approximate symmetry of the strong interaction
- 2. The symmetry is "hidden", "spontaneously broken": $|0\rangle$ invariant only under the isospin subgroup SU(2)_{L+R}
- 3. The spontaneous breakdown of an exact symmetry entails massless particles
- 4. For the strong interaction, the pions play this role
- 5. The pions are not massless, only light, because the symmetry is only an approximate one Nobel Prize 2008

Explains why the energy gap of the strong interaction is so small : $M_{\pi} \simeq 135 \text{ MeV}$ When Nambu proposed this idea, the origin of the symmetry was mysterious Approximate symmetries ? Partially conserved currents ? For gauge theories like QCD, approximate symmetries do occur naturally

Chiral symmetry

Where is Nambu's hidden approximate symmetry in QCD ?

- QCD with N_f massless quarks: Lagrangian has an exact chiral symmetry: $SU(N_f)_L \times SU(N_f)_R$
- $|0\rangle$ is symmetric only under the subgroup SU(N_f)_{L+R}
 Symmetry is spontaneously broken
- \Rightarrow Spectrum contains $N_f^2 1$ Nambu-Goldstone bosons
- m_{u} and m_{d} happen to be small
- \Rightarrow SU(2)_L×SU(2)_R is an approximate symmetry of QCD
 - broken spontaneously
 - \Rightarrow $|0\rangle$ not invariant
 - ${}_{ullet}$ broken explicitly by mass term $m_{ extsf{u}}ar{u} u + m_{ extsf{d}}ar{d} d$
 - $\Rightarrow \mathcal{L}_{QCD}$ not invariant
 - $m_{
 m u}, m_{
 m d}$ are very small ightarrow symmetry is nearly exact

Chiral perturbation series

- For $m_{\rm u} = m_{\rm d} = 0$, pion exchange gives rise to poles and branch points at p = 0
- ⇒ Low energy expansion is not a Taylor series, contains infrared singularities
- Properties of the Nambu-Goldstone bosons are governed by the hidden symmetry that is responsible for their occurrence
- In NG bosons of low momentum interact only weakly: can treat the momenta as well as $m_{\rm u}, m_{\rm d}$ as perturbations
- \Rightarrow Chiral perturbation series: simultaneous expansion of the matrix elements in powers of p, m_u, m_d

Effective Lagrangian

Formulation in terms of an effective Lagrangian

Weinberg 1967, Coleman, Wess, Zumino, Callan, Dashen, Weinstein 1969

Lagrangian massless Nambu-Goldstone Bosons

⇒ Perturbation series has infrared singularities

Li + Pagels 1971, Langacker + Pagels 1973

Weinberg 1979, Gasser + Zepeda 1980, Gasser 1981

Singularities due to NG bosons can be worked out with an effective field theory "Chiral Perturbation Theory"

• χ PT reproduces the low energy structure of QCD, order by order in the expansion in powers of p, m_u, m_d

Plethora of low energy constants

- χ PT merely exploits the symmetries of QCD: yields the general solution of the Ward-Takahashi identities
- *L_{eff}* contains all functions that can be formed with the pion field and its derivatives, only subject to the condition that the sum is chirally invariant
- Order in number of derivatives (powers of momentum)
- ⇒ Number of terms in \mathcal{L}_{eff} rapidly grows with the order: LO: 2, NLO: 7, NNLO: 53, ...
- Symmetries only relate do not determine
- In principle, the effective theory is exact: yields expansion of QCD Green functions in p, m_q

Illustration: energy gap of QCD

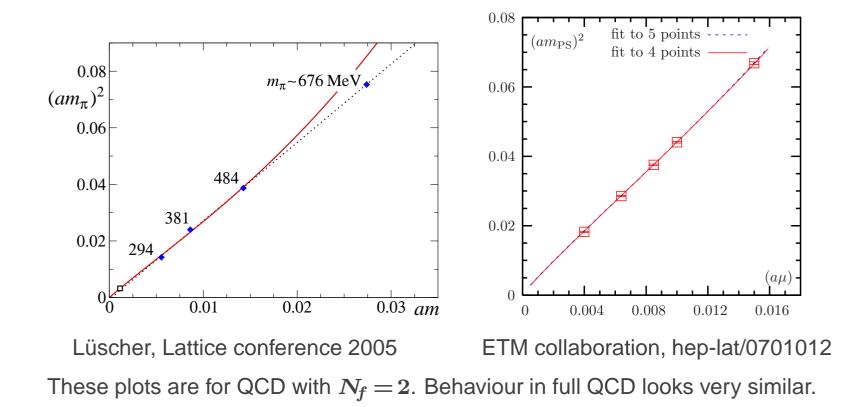
- Energy gap of QCD: M_{π}
- Ignore e.m. self energy, e = 0, pure QCD
- $\Rightarrow M_{\pi}$ is a function of $\Lambda_{ extsf{QCD}}, \, m_{ extsf{u}}, m_{ extsf{d}}, \dots, m_{ extsf{t}}$
- How does M_{π} depend on $m_{
 m u}, m_{
 m d}$?
 Chiral symmetry: $M_{\pi}
 ightarrow 0$ for $m_{
 m u}, m_{
 m d}
 ightarrow 0$
- Leading order formula (tree level of χ PT):

 $M_\pi^2 = (m_{
m u} + m_{
m d}) B$ Gell-Mann, Oakes, Renner 1968

• The coefficient is determined by the quark condensate: $B=\frac{|\langle 0|\,\bar{u}u\,|0\rangle|}{F_\pi^2}$

Lattice results for M_π

GMOR formula can now be checked on the lattice: determine M_{π} as a function of $m_{u} = m_{d} = m$



Lattice

- Quality of data is impressive
- No quenching, quark masses are sufficiently light
- \Rightarrow Legitimate to use χ PT for the extrapolation to the physical values of $m_{\rm u}, m_{\rm d}$
- Proportionality of M_{π}^2 to

$$m_{
m ud} \equiv rac{1}{2}(m_{
m u}+m_{
m d})$$

holds out to $m_{
m ud} \simeq 10 imes m_{
m ud}^{
m phys}$

Main limitation: systematic uncertainties from lattice artifacts, continuum extrapolation, finite size effects, etc.

Expansion of M_π^2 in powers of $m_{\scriptscriptstyle extsf{u}}, m_{\scriptscriptstyle extsf{d}}$

GMOR formula represents leading term of *x*PT
 Correction of first nonleading order:

$$egin{aligned} M_\pi^2 &= M^2 \left\{ 1 - rac{M^2}{32\pi^2 F_\pi^2} \ ar{\ell}_3 \!+\! O(M^4)
ight\} \ M^2 &\equiv B(m_{ ext{u}} + m_{ ext{d}}) \end{aligned}$$

 $\ell_3 \in \mathcal{L}_{\textit{eff}}$ depends logarithmically on running scale

• What counts is the running coupling at scale M_{π} :

$$ar{\ell}_3 = \ell n rac{{\Lambda_3}^2}{M_\pi^2}$$

 \Rightarrow Expansion of M_{π} contains a chiral logarithm

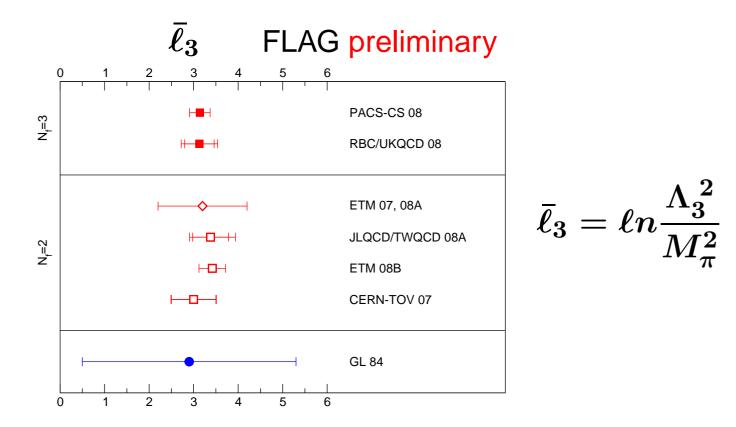
Langacker + Pagels 1973, Gasser + Zepeda 1980, Gasser 1981

Size of the low energy constant ℓ_3

Crude estimate, based on SU(3)_L×SU(3)_R: $\bar{\ell}_3 = 2.9 \pm 2.4$

Gasser & L. 1984

Lattice allows more accurate determination:



Result of RBC/UKQCD 08, for instance: $ar{\ell}_3 = 3.13 \pm 0.33 \pm 0.24$

Expansion of F_{π} in powers of the quark mass

Also contains a logarithm at NLO:

$$egin{split} F_{\pi} &= F\left\{1\!+\!rac{M^2}{16\pi^2 F^2}\,\ell n\,rac{\Lambda_4^{\ 2}}{M^2}\!+\!O(M^4)
ight\}\ M_{\pi}^2 &= M^2\left\{1\!-\!rac{M^2}{32\pi^2 F^2}\,\ell n\,rac{\Lambda_3^{\ 2}}{M^2}\!+\!O(M^4)
ight\} \end{split}$$

F is value of pion decay constant in limit $m_{ extsf{u}}, m_{ extsf{d}} o 0$

- Structure is the same, coefficients and scale of logarithm are different
- Quark mass dependence of F_{π} can also be measured on the lattice \Rightarrow measurement of Λ_4
- Alternative method: determine the scalar form factor of the pion, radius $\langle r^2 \rangle_{\!s} \leftrightarrow \bar{\ell}_4 = \ell n (\Lambda_4^2/M_\pi^2)$

Colangelo, Gasser & L. 2001

Lattice determination of scalar radius

- Scalar form factor can be measured on the lattice
- Most recent lattice determination:

$$\left< r^2
ight>_{\!\!s} = 0.617 \pm 0.079_{\,
m stat} \pm 0.066_{\,
m syst}\,
m fm^2$$

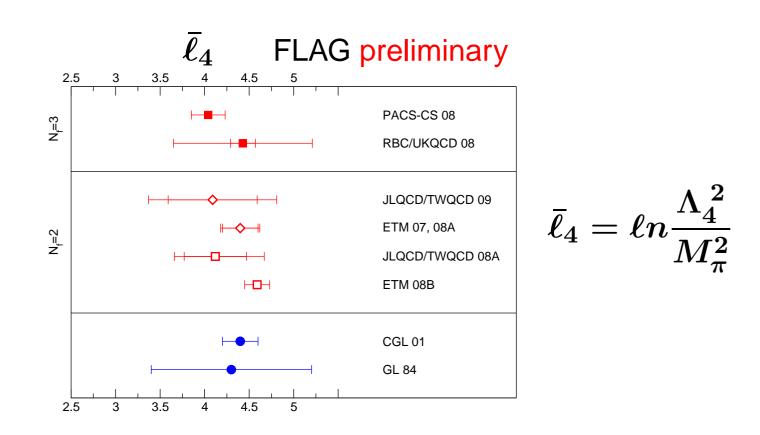
JLQCD/TWQCD collaboration, arXiv:0905.2465

This is consistent with the value obtained on the basis of dispersion theory,

$$\langle r^2
angle_s = 0.61 \pm 0.04~{
m fm}^2$$
 Colangelo, Gasser & L. 2001

but the uncertainties in the lattice result are still large

Size of ℓ_4



Lattice results are consistent with value obtained from dispersion theory, uncertainties are comparable

$\pi\pi$ interaction

- Symmetry fixes the interaction among the Nambu-Goldstone bosons
- LO formulae for the S-wave scattering lengths:

$$a_0^0 = rac{7M_\pi^2}{32\pi F_\pi^2}\,, \quad a_0^2 = -rac{M_\pi^2}{16\pi F_\pi^2} \,$$
 Weinberg 1966

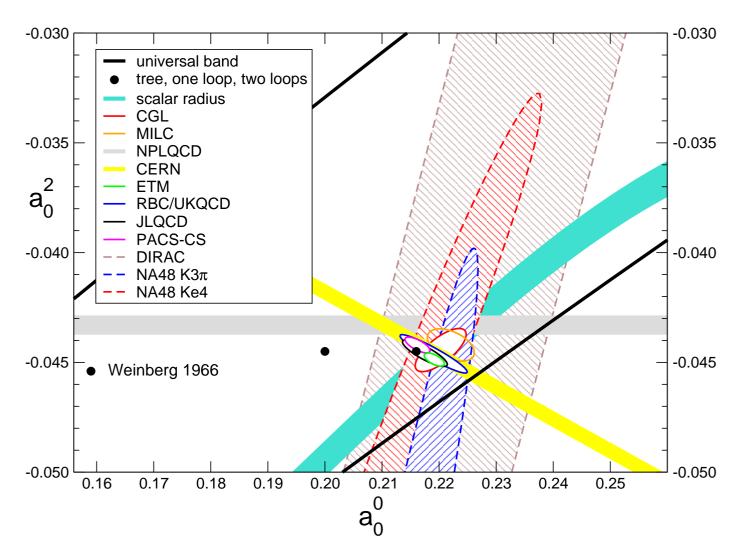
- **IDENTIFY and SET UP:** NLO corrections are determined by ℓ_3, ℓ_4 Gasser + L. 1983
- $\pi\pi$ scattering amplitude known to NNLO

Bijnens, Colangelo, Ecker, Gasser + Sainio 1996

- Uncertainty in predictions for a_0^0, a_0^2 is dominated by the uncertainty in the low energy constants ℓ_3, ℓ_4
- \Rightarrow Can make use of the lattice results for these
- Contributions from higher order couplings are tiny

Guo + Sanz-Cillero arXiv:0904.4178

Consequence of lattice results for ℓ_3 , ℓ_4



The plot represents beautiful physics: experiment as well as theory

Extension to $SU(3)_L \times SU(3)_R$

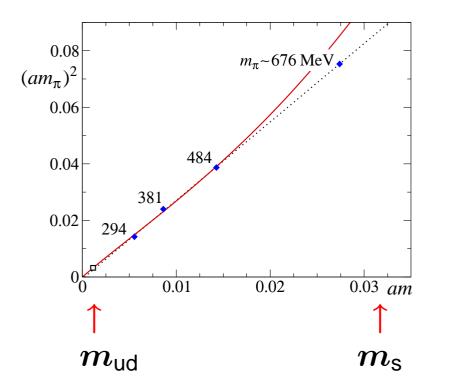
In the theoretical limiting case $m_u = m_d = m_s = 0$ QCD acquires an exact SU(3)_L×SU(3)_R symmetry

Is m_s small enough for this to represent a useful approximate symmetry ?

- Theoretical reasoning
 - SU(3)_{L+R} (eightfold way) is an approximate symmetry
 - Typical size of SU(3)_{L+R} breaking: $rac{F_K}{F_\pi} = 1.19 \pm 0.01$
 - Only coherent way to understand this in QCD:
 The mass differences m_s m_d, m_d m_u must be small, can be treated as perturbations
 - $\,\,$ Since $m_{
 m u},m_{
 m d}\ll m_{
 m s}$
 - $\Rightarrow m_s$ is small, SU(3)_L×SU(3)_R must be an approximate symmetry, breaking not larger than for SU(3)_{L+R}

Expansion in powers of $m_{\scriptscriptstyle m u}, m_{\scriptscriptstyle m d}, m_{\scriptscriptstyle m s}$

- Expansion in powers of m_u, m_d, m_s ought to work, but expect convergence to be comparatively slow
- In Lattice results: $M_\pi^2 \propto m_{
 m ud}$ holds out to $10 imes m_{
 m ud}^{
 m phys}$
- $\blacksquare m_{
 m s}$ is larger than that: $m_{
 m s}\simeq 27\! imes\!m_{
 m ud}$

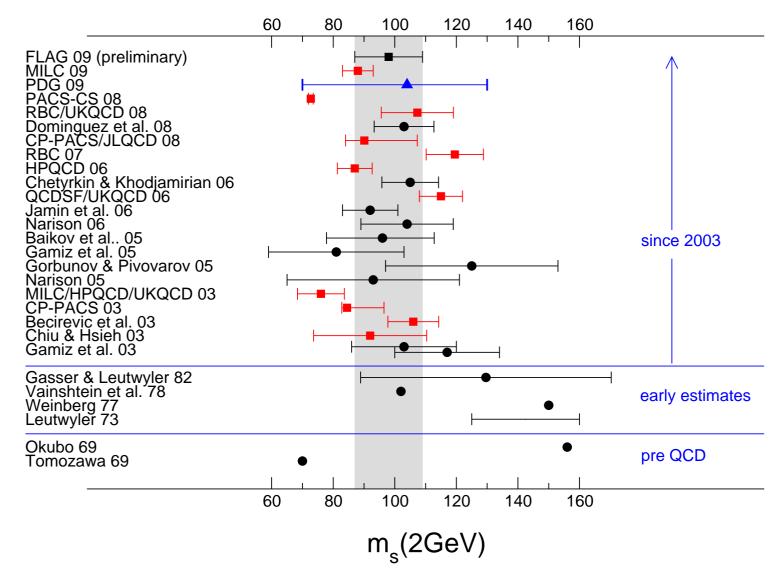


Compare $rac{F_K}{F_\pi}\simeq 1.19$

Three light quarks: interface between lattice and $\chi {\rm PT}$

- Steady progress in simulating QCD with light quarks, but the quark masses used are still too large for the NLO formulae of χ PT to work
- M_{π} OK, but M_K too large
- Three options
 - Use smaller quark masses
 - Extrapolate only in $m_{\rm u}, m_{\rm d}$, keep $m_{\rm s}$ fixed
 - Account for NNLO contributions
- Some lattice analyses do allow for NNLO contributions, but the chiral logarithms are accounted for only to NLO
- In part, these may arise from nonperturbative renormalization effects Some of the collaborations still use perturbative renormalization
- \Rightarrow Illustrate this with the results for $m_{
 m s}$

Mass of the strange quark



Lattice and sum rule results agree within errors Can expect significant progress in lattice determinations very soon Relative size of $m_{\scriptscriptstyle extsf{u}}, m_{\scriptscriptstyle extsf{d}}, m_{\scriptscriptstyle extsf{s}}$

$$egin{aligned} &M_{\pi^+}^2 = (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ &M_{K^+}^2 = (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ &M_{K^0}^2 = (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

- χ PT relates B_0 to the quark condensate, but does not predict its size \Rightarrow no prediction for size of quark masses
- Account for e.m. self energies at tree level of χ PT and drop effects of second order in isospin breaking $\frac{m_{\rm u}}{m_{\rm d}} = \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56$ $\frac{m_{\rm s}}{m_{\rm d}} = \frac{M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2$ Weinberg 1977
- Corrections from higher orders ? Could they strongly modify the numerical values ? $m_u = 0$?

Higher orders

- i scalar probe analogous to $\gamma, \, \mathsf{W}^{\pm}$
- ⇒ Quark masses cannot be determined from phenomenology alone, not even their ratios

Kaplan & Manohar 1986

- At LO, χ PT does determine the quark mass ratios
- At NLO, there is only one relation without unknowns:

$$Q^2 \equiv rac{m_{
m s}^2 - m_{
m ud}^2}{m_{
m d}^2 - m_{
m u}^2} = rac{M_K^2 - M_\pi^2}{M_{K^0}^2 - M_{K^+}^2} \, rac{M_K^2}{M_\pi^2} + {
m NNLO} + {
m e.m.}$$

 M_K , M_π : mean masses of the two multiplets

Gasser & L. 1985

The relation correlates the two ratios Value of $Q \rightarrow$ ellipse in the plane $\left(\frac{m_{\rm u}}{m_{\rm d}}, \frac{m_{\rm s}}{m_{\rm d}}\right)$

Weinberg's leading order formulae give Q = 24.3.

$\eta ightarrow \pi^+\pi^-\pi^0$

- Critical input for value of Q is the "Dashen theorem": e.m. self energies are accounted for only at tree level
- Image: η decay allows an independent determination of QGasser & L. 1985
- Dispersive analysis of the decay amplitude

Kambor, Wiesendanger & Wyler 1996, Anisovich & L. 1996, Walker 1998

In $\eta \rightarrow 3\pi$, the e.m. contributions are suppressed

Bell & Sutherland 1968

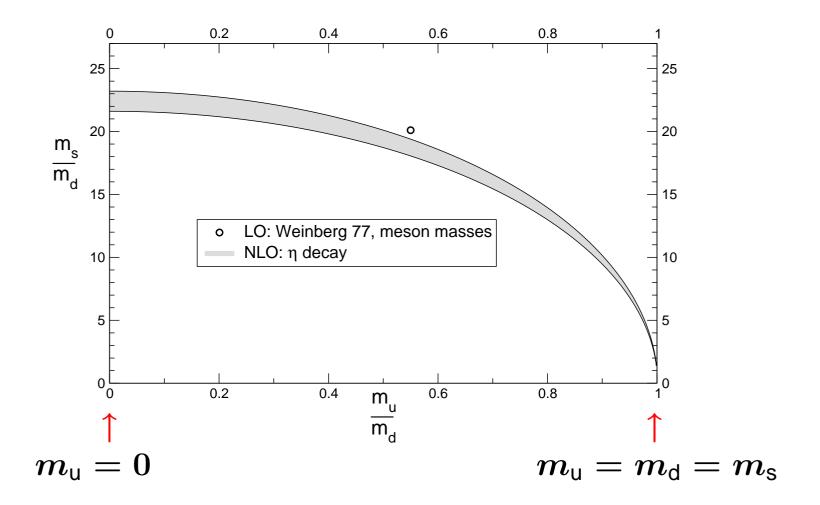
 \Rightarrow Uncertainties are smaller

Quantitative analysis of e.m. contributions: Ditsche, Kubis & Meißner 2009

- Update of Walker's calculation with the current experimental information $\Rightarrow Q = 22.4 \pm 0.8$, to be compared with Q = 24.3 from Dashen theorem
- Comprehensive analysis of $\eta \rightarrow 3\pi$ is under way

PhD thesis of Stefan Lanz, in preparation

χ PT at leading and first nonleading order



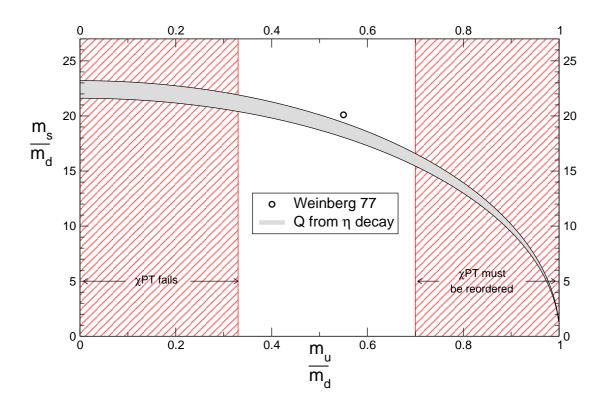
Where on the ellipse ? $m_{\scriptscriptstyle ext{u}}=0$?

- The vacuum angle θ breaks CP
- Chiral symmetry ensures that θ can enter physical quantities only via det $\mathcal{M} \times e^{i\theta}$
- If m_u is zero → det \mathcal{M} vanishes → θ without physical significance → QCD invariant under CP
- Quite a few authors advocated m_u = 0 as the solution of the strong CP problem, possibly some still do ... Nice idea, but amounts to trading one puzzle for the other:
- If $m_{\rm u}$ were zero, the Weinberg formula for $m_{\rm u}/m_{\rm d}$ would turn into a prediction for $M_{K^0}-M_{K^+}$:

$m_u = 0$?

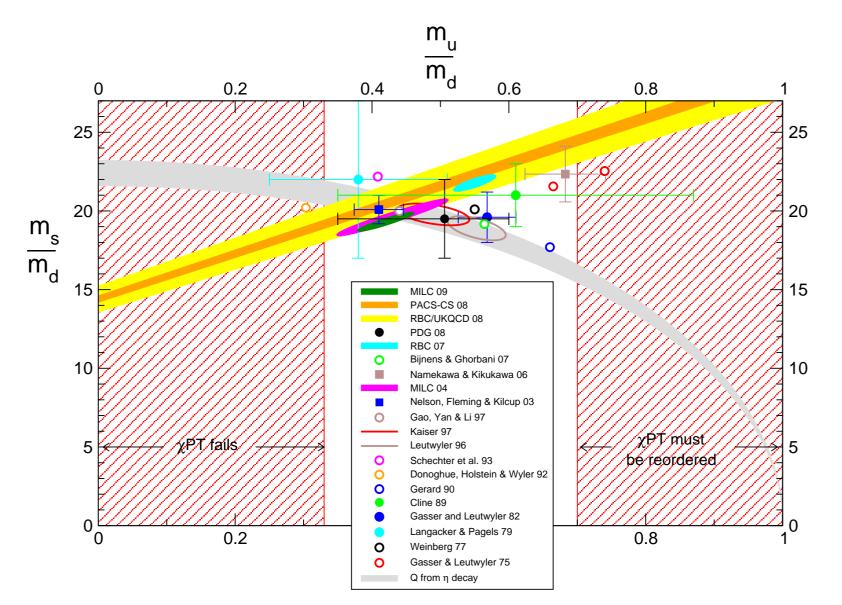
- If m_u were zero, then χ PT would be in conflict with the observed mass pattern of the NG bosons
 - chiral series could not be truncated at low orders
 - $SU(3)_L \times SU(3)_R$ not an approximate symmetry
 - Success of Gell-Mann-Okubo formula accidental etc.
- Leading order formula for M_{K⁰} M_{K⁺} is off by less
 than a factor of 2 only if 0.7 > m_u/m_d > 0.33

Allowed range of mass ratios



- All of the lattice results are in the range allowed by χPT None is consistent with the solution $m_u = 0$ of the strong CP problem
- The MILC collaboration rules this solution out at 10 σ Nature solves the strong CP problem differently

Results for quark mass ratios



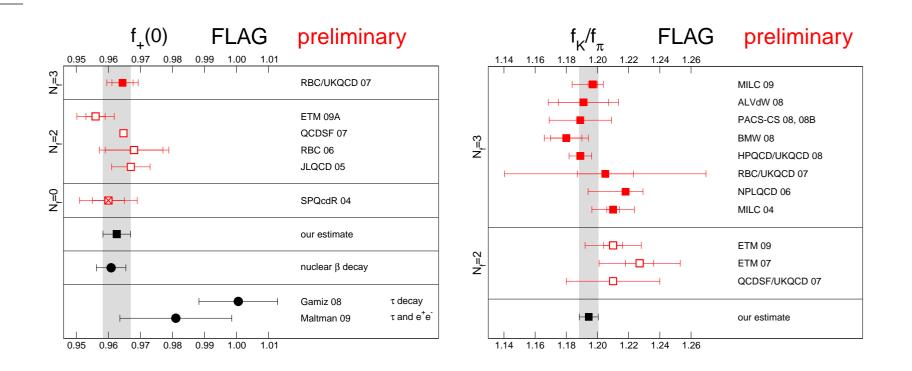
Lattice determination of V_{us} , V_{ud}

- Rely on Standard Model, where $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- Precision data on K-decays imply

$$egin{aligned} |V_{us}|f_+(0) &= 0.21661(47) \ & rac{V_{us}F_K}{V_{ud}F_+} \ & = 0.27599(59) \end{aligned}$$

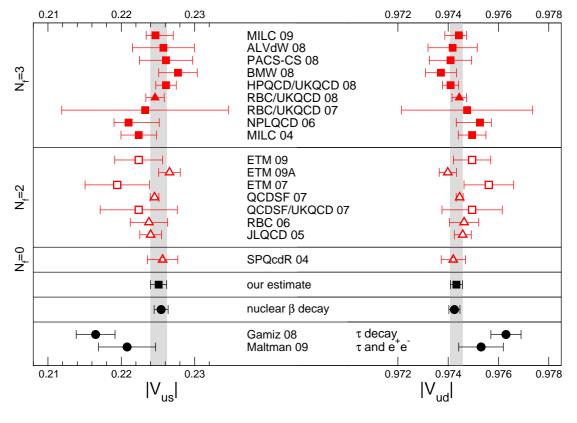
- ⇒ Since V_{ub} is tiny and known to good accuracy, $V_{ud}, f_+(0), F_K/F_\pi$ are all determined by V_{us}
- Lattice allows two independent ways to measure V_{us} : calculate $f_+(0)$ or calculate F_K/F_{π}

Lattice results for $f_+(0)$ and F_K / F_π



FLAG estimate combines the lattice data for $f_+(0)$ with those for F_K/F_{π}

Lattice results for V_{us} and V_{ud}



FLAG preliminary

- Confirms nuclear β decay value for V_{ud} within errors
- au decay: physics beyond the Standard Model ?

Trying to understand the size of the low energy constants

- $SU(2)_L \times SU(2)_R$: can understand the size of all NLO couplings in terms of resonance exchange Gasser + L. 1984
- Also true for $SU(3)_L \times SU(3)_R$ Ecker, Gasser, Pich, de Rafael 1989
- χ PT formulae have been worked out to NNLO for many quantities of physical interest
 Bijnens and collaborators
- Formulae involve new unknown low energy constants
- Resonance Chiral Theory": couplings of higher order, effective Lagrangian for e.m. + weak interactions Gonzalez-Alonso, Guo, Pich, Portoles, Prades, Rosell, Ruiz-Femenia, Sanz-Cillero ...
- Comprehensive review of current state of the art:

Bijnens, arXiv:0904.3713 (Valencia 2009)

Problem with Resonance Chiral Theory in case of $f_+(0)$

Form factor known to NNLO

Post + Schilcher 2002, Bijnens + Talavera 2003

- Account for isospin breaking, use $R\chi PT$ estimates for the low energy constants
- $\Rightarrow f_+(0) = 0.986(7)$

Kastner + Neufeld 2008

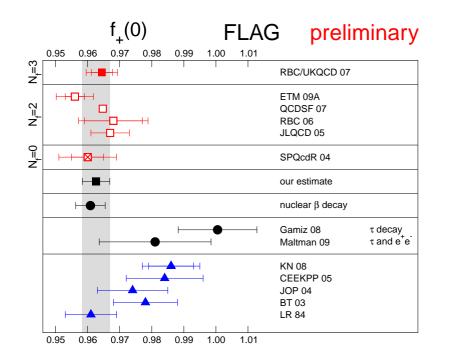
To be compared with

0.961(5) (β decay) or 0.962(5) (lattice)

(These numbers are obtained by assuming that the CKM matrix is unitary)

Discrepancy amounts to 2.9 σ and 2.8 σ , respectively

Compare with lattice results



- $1 f_+(0)$ is a symmetry breaking effect
- No problem at NLO: parameter free prediction
- \Rightarrow R χ PT does not appear to account properly for the symmetry breaking effects at NNLO

Problems with scalar meson dominance ?

- Quark mass term in \mathcal{L}_{QCD} is a scalar operator
- Matrix elements dominated by scalar resonances ? Can the *dependence on the quark masses* be accounted for with scalar meson dominance ?
- Rapidly rising $\pi\pi$ continuum (large chiral logs), σ makes a broad bump, narrow peak from $f_0(980)$, glueballs, etc.
- Failure of scalar meson dominance may be the origin of the problem
 more detailed discussion in Erice lectures 2007

- Expansion in powers of m_u, m_d yields a very accurate low energy representation of QCD
- Lattice yields remarkably coherent and significant results for pion physics already now

Low energy pion physics is a precision laboratory Theoretical tools: χ PT, lattice, dispersion theory

- Limitations:
 - Low energies
 - e.m. interaction must properly be accounted for
 - Calculations cannot be done on back of an envelope

lackslash $igg| m_{ extsf{u}}
eq 0$

Nature solves the strong CP problem differently

$$lacksquare$$
 $m_{ extsf{s}}=98\pm11~ extsf{MeV}$

FLAG 09 (preliminary result) $\overline{\text{MS}}$ scheme, scale 2 GeV

Lattice results confirm sum rule estimates within errors

- For the physical values of m_u , m_d , m_s , the leading order terms in the chiral perturbation series of M_{π} , M_K , F_{π} , F_K do represent a decent approximation
- Summary of current knowledge of quark mass ratios:

$$rac{m_{ extsf{u}}}{m_{ extsf{d}}}=0.47\pm0.08$$

$$rac{m_{
m s}}{m_{
m d}} = 19.7 \pm 1.5$$

to be compared with Weinberg's LO formulae, which give 0.56 & 20.2, respectively

- Lattice results indicate that the NLO contributions in M_{π} , M_{K} , F_{π} , F_{K} do dominate the corrections
- $\Rightarrow \chi PT$ does appear to work for SU(3)_L×SU(3)_R as well
- Extension to kaon physics is making progress
 - Except for a few selected quantities, kaon physics is still at an exploratory stage
 - Representations of many quantities of interest are available to NNLO of χ PT \Rightarrow Bijnens et al.
 - Main problem at NNLO: the current knowledge of the LECs is rudimentary
 - The R χ PT estimates for $f_+(0)$ illustrate the problem
 - There was a problem with the R χ PT estimates also for $K \to \pi \pi$, but this puzzle appears to be solved

Cirigliano, Ecker + Pich, Phys. Lett. 2009

- Many open issues:
 - M_K = 600 MeV is beyond reach of χ PT
 - Better determination of some of the LECs needed
 - In particular, a meaningful comparison of many of the χ PT results in kaon physics with experiment requires better knowledge of those LECs that determine the dependence on the quark masses
 - Size of Okubo-lizuka-Zweig rule violations ?
 - e.m. self energies, corrections to Dashen Theorem ?

Significant progress at the interface between lattice and effective field theory methods is ante portas

Spares

Phase of final state in $K o \pi \pi$

• $K \rightarrow \pi \pi$ decay: value of $\delta_0^0 - \delta_0^2$ at $s = M_K^2$

- $\pi\pi$ phase shifts accurately known from dispersion theory $\delta_0^0-\delta_0^2=47.5^\circ\pm1.5^\circ$ Colangelo, Gasser, L. 2001
- In the determination from $K \to \pi \pi$ via Watson theorem, isospin breaking is enhanced because of the $\Delta I = \frac{1}{2}$ rule
- Complete analysis to NLO Cirigliano, Ecker, Neufeld + Pich 2004
- Recent update of the numerics yields

 $\delta_0^0 - \delta_0^2 = 52.5^\circ {\pm 0.8^\circ_{
m exp}} {\pm 2.8^\circ_{
m th}}$

Cirigliano, Ecker + Pich, Phys. Lett. 2009

Remaining difference amounts to 1.5 σ

Large N_c

- In the large N_c limit, the η' also becomes a Nambu-Goldstone boson
- \Rightarrow Can extend χ PT to include the η' , systematic expansion in powers of $m_{\rm u}$, $m_{\rm d}$, $m_{\rm s}$ and $1/N_c$
- In this framework, there is no ambiguity at NLO
- Triangle anomaly yields a prediction also for $\Gamma_{\eta' \to \gamma\gamma}$ Can use this to pin down all unknowns at NLO

Kaiser 1997

η and η ' at large N_c

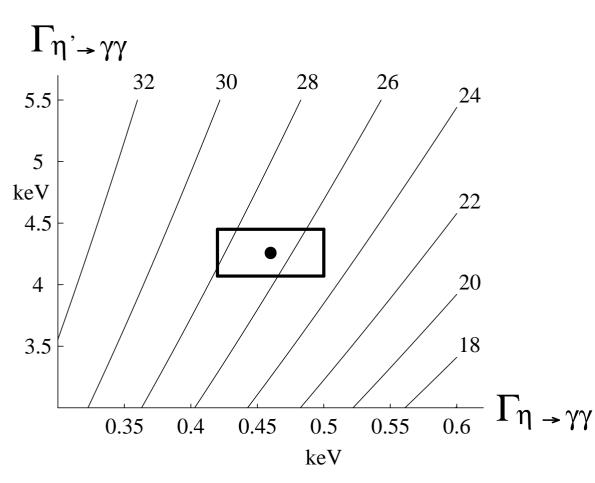


Figure taken from diploma work of Roland Kaiser (1997)

Tilted lines: value of $S = m_s/m_{ud}$, rectangle: experiment Central value found in this determination: S = 26.6Barely differs from leading order result: S = 25.9