Gauge/Gravity Duality and QCD observables

Ingo Kirsch

(DESY Hamburg, Germany,

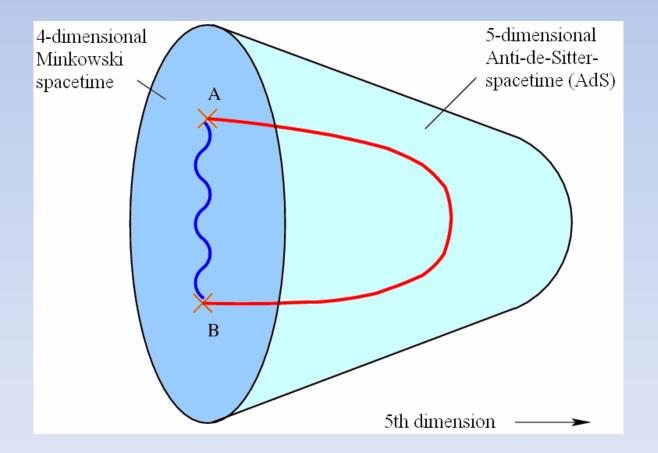
in collaboration with **Johanna Erdmenger** (MPI Munich)

QCD: The Modern View of the Strong Interactions Berlin, 6 October 2009

Outline

- 1. AdS/CFT and its application to QCD
 - Review of AdS/CFT
 - Application to study the strong interaction (QCD)
 - Modifications of the AdS/CFT duality:
 - i) deformed AdS spaces + ii) introduction of flavours

2. Observables


- Example I: QCD at <u>zero</u> temperature (large N)
 U(1) spontaneous chiral symmetry breaking
- Example II: QCD at <u>finite</u> temperature (large N) first-order phase transition meson melting in QGP

3. Conclusions

AdS/CFT correspondence

Equivalence (or duality) of two theories:

4D conformal field theory (CFT) \Leftrightarrow 5D theory of gravity (string theory) on AdS₅ (=anti-de-Sitter space, Λ <0)

Standard AdS/CFT duality

Standard AdS/CFT correspondence:

Maldacena (1997

- i) boundary CFT: 4d *SU(N)* N=4 super Yang-Mills theory
- ii) bulk: type IIB supergravity (string th.) on AdS_5 (x S^5)

supergravity approximation valid if $\lambda = 4\pi g_s N \gg 1$

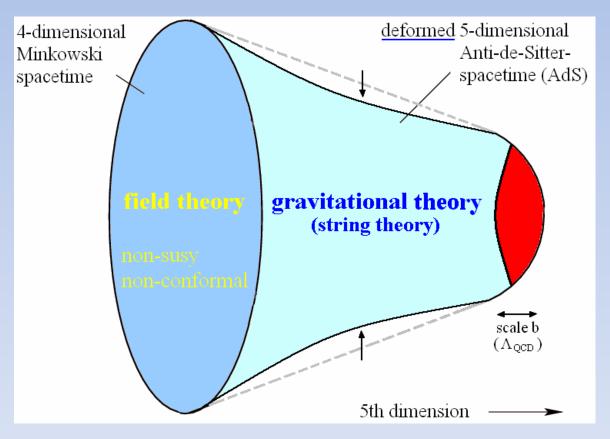
Properties of the N=4 field theory:

- 1. *N>>1* (large)
- 2. supersymmetric
- 3. conformal invariance
- 4. all fields in the adjoint representation (only "gluons")

QCD:

- 1. *N=3*
- 2. not supersymmetric
- 3. no conformal invariance
- 4. gluons and quarks

Can we use AdS/CFT as dual theory of QCD?


modify AdS/CFT

Modifications of AdS/CFT

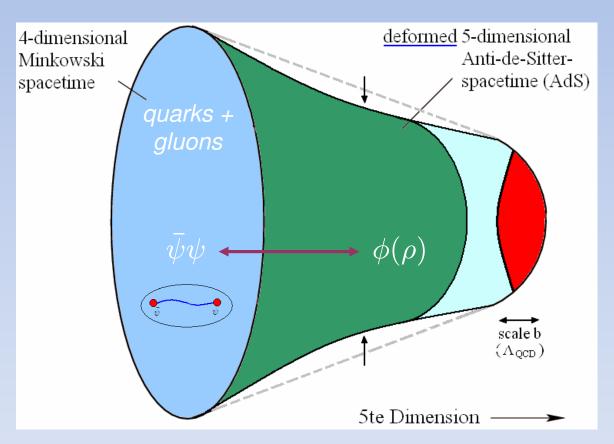
...to find a dual to a ``QCD-like" theory

First modification

<u>deformation</u> of the AdS background:

some examples

Constable-Myers background


Gubser Dilaton-Flow

Maldacena-Nunez, Klebanov-Strassler, etc.

breaking of supersymmetry and conformal invariance, bound states arise ("confinement")

Second modification

Introduction of <u>fundamental fields</u> ("quarks") in the duality:

Karch, Katz (2002)

Kruczenski, Mateos, Myers, Winters (2003)

Babington, Erdmenger, Evans, Guralnik, I.K. (2003)

probe (quenched) limit: $N_f \ll N_c$

additional scalar or vector fields in the AdS-space which are dual to meson operators

Generalized AdS/CFT dictionary

Fundamental degrees of freedom added (``quarks")

$$\mathcal{O} \propto \bar{\psi}\psi, \ \bar{\psi}\gamma^{\mu}\psi \stackrel{\text{dual to}}{\longleftarrow} \phi(\rho, x^{\mu}), \ A^{\mu}(\rho, x^{\mu})$$
 mesons fluctuations

e.o.m of ϕ :

$$m^2 = -3 \Rightarrow \Delta = 3$$
, $m^2 = \Delta(\Delta - 4)$

UV asymptotic behaviour of solutions to equation of motion:

$$\phi \propto m_q e^{-\rho} + c e^{-3\rho}$$

 m_q = quark mass (source of \mathcal{O}) c = quark condensate (vev of \mathcal{O})

find <u>regular</u> solutions => $c(m_q)$

QCD observables

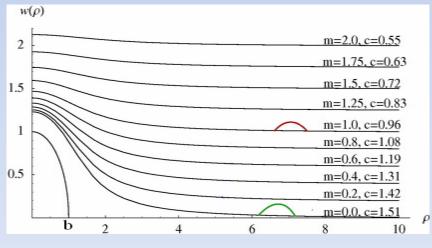
Example I: U(1) chiral symmetry breaking

Example I: U(1) chiral symmetry breaking

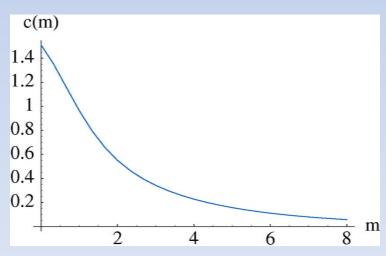
duality: i) branes in **Constable-Myers** background (confining)

ii) "QCD-like" SU(N) YM theory with N>>1 (T=0)

Babington, Erdmenger, Evans, Guralnik, I.K. (2003)


U(1)_A spontaneous chiral symmetry breaking:

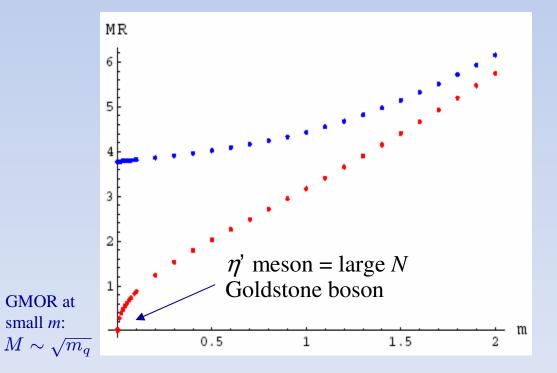
$$-\psi \to e^{-i\varepsilon}\psi, \ \tilde{\psi} \to e^{-i\varepsilon}\tilde{\psi}$$

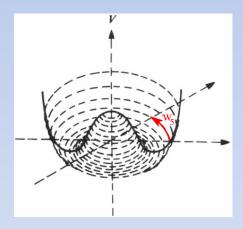

- broken by quark condensate: $c=-\langle \psi \tilde{\psi}
angle
eq 0$

$$c = -\langle \psi \tilde{\psi} \rangle \neq 0$$

embedding profiles + condensate:

"screening" effect

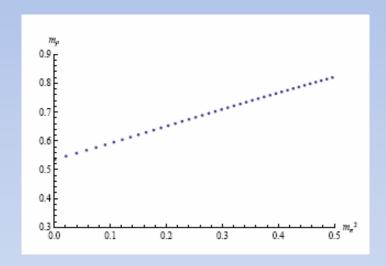



spont. U(1) breaking: $m \rightarrow 0$, $c \neq 0$

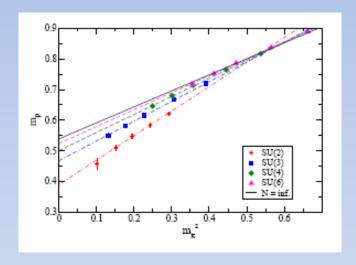
Meson spectrum and "large N" Goldstone boson (η')

Consider plane-wave-fluctutations $\delta \phi = f(\rho) \sin(k x)$ $(M^2 = -k^2)$ around the embedding profile $w = w(\rho)$

 \Rightarrow meson spectrum M(m)



Goldstone boson due to spont. U(1) chiral SB (anomaly suppressed at large N_c)


Comparison to lattice gauge theory

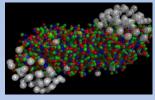
Mass of ρ -meson as function of π meson mass² (large N_c)

AdS/CFT: Erdmenger, Evans, Kirsch, Threlfall `07, review EPJA

$$\frac{m_{\rho}(m_{\pi})}{m_{\rho}(0)} = 1 + 0.307 \left(\frac{m_{\pi}}{m_{\rho}}\right)^2$$

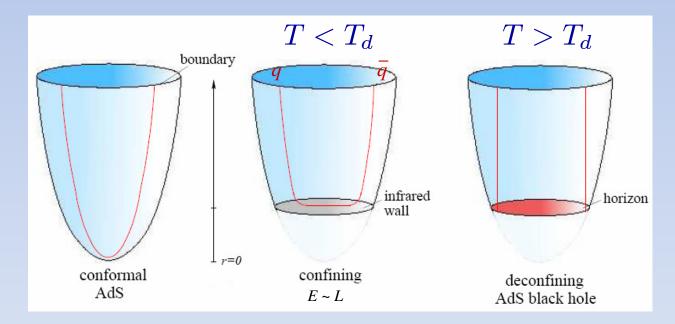
Lattice: Del Debbio, Lucini, Patella, Pica `07: slope 0.2816(2)

Bali, Bursa `08: slope 0.304(3)


extrapolation (continuum limit): slope 0.341 ± 0.023

QCD observables

Example II: First-order phase transition in QGP


Example II: Finite Temperature

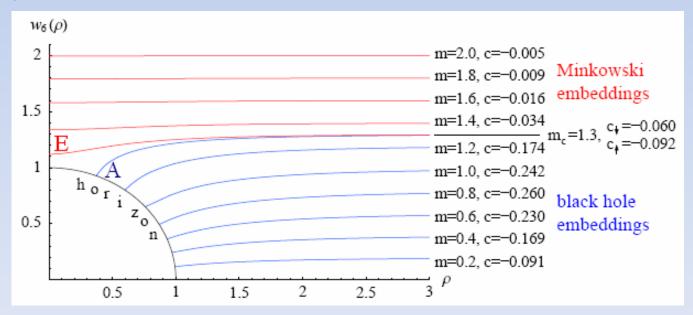
Quark gluon plasma: strongly-coupled state of matter above deconfinement temperature T_d

RHIC

Confinement/Deconfinement

AdS black hole: - AdS/CFT dual of field theory at <u>finite</u> temperature - Hawking temperature $T_H \Leftrightarrow$ temperature in the dual QFT

Embedding and quark condensate

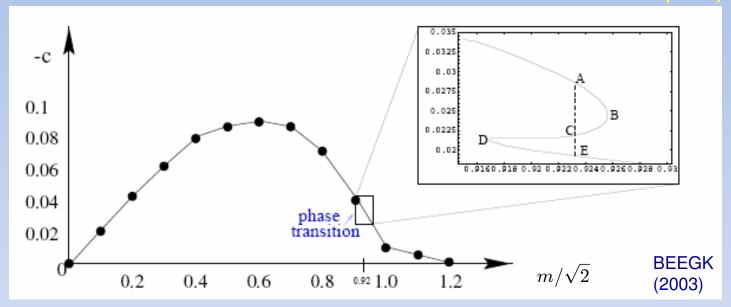

duality: i) branes in **AdS black hole** background (deconf.) ii) "QCD-like" SU(N) YM theory with N>>1 (T ≠ 0)

Babington, Erdmenger, Evans, Guralnik, I.K. (2003), I.K. (2004)

Mateos, Myers, Thomson (2006)

Two kinds of embedding solutions: branes may end either on the horizon or at a point above the horizon

embedding profiles:



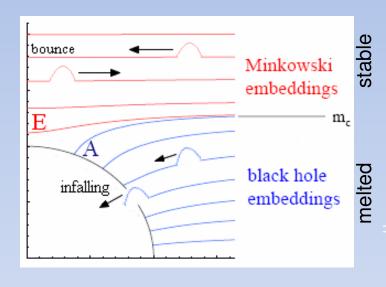
First-order phase transition

condensate vs quark mass:

I.K. (2004)

16

properties of the transition:

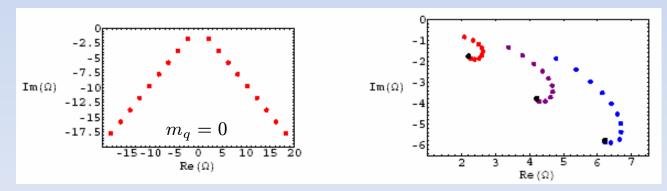

- transition occurs above conf./deconf. transition, $T_c > T_{dec}$
- <u>first-order</u> transition at m_c =1.3 (= 0.92 in figure)

Physical interpretation?

Meson melting into the QGP

decay governed by quasinormal modes:

Montero (2006)


$$\delta \phi = \phi(\rho) e^{-i\omega t + ik \cdot x}$$
$$\omega_n^{\text{quasinormal}} = \Omega - i \frac{\Gamma_n}{2}$$

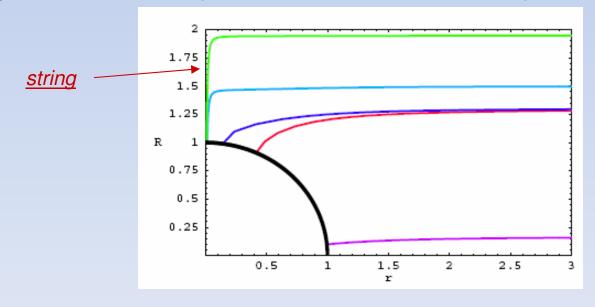
$$\omega_n^{\text{quasinormal}} = \Omega - i \frac{\Gamma_n}{2}$$

$$au \sim \Gamma_n^{-1}$$
 relaxation time

qn. modes dissipate energy into the BH, mesons melt into the quark gluon plasma

Plot of $Im(\omega)$ versus Re(ω)

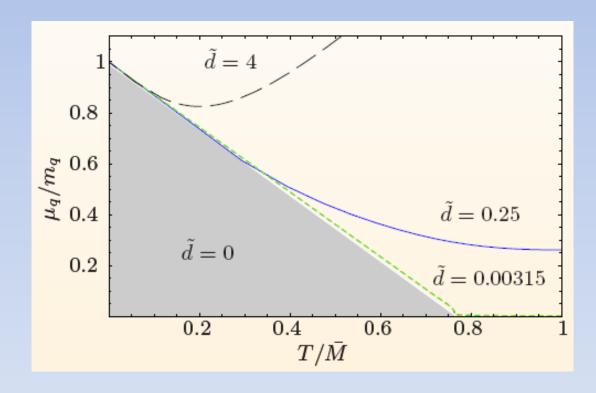
Finite U(1) quark number density


Quark number density n_q and U(1) chemical potential μ

Mateos, Myers Matsuura et al

$$A_0(\rho) = \mu + \frac{\tilde{d}}{\rho^2}, \qquad \tilde{d} = \frac{2^{5/2}}{N_f \sqrt{\lambda} T^3} n_q$$

 $(A_0 = time component of worldvolume gauge field)$


For $n_q \neq 0$ all embeddings are black hole embeddings (mesons melt):

Phase diagram for finite quark number density

Phase diagram:

Sin, Yogendran et al; Mateos, Myers et al; Karch, O'Bannon; . .

first-order transition is characterised by the condensation of charge

grey region: $n_q=0$: Minkowski embeddings \Rightarrow stable mesons

white region: $n_q \neq 0$: black hole embeddings \Rightarrow meson melting

Conclusions

Generalized AdS/CFT dualities provide new tools for strongly-coupled gauge theories

numerous applications:

- spontaneous chiral symmetry breaking
- <u>first-order phase transition</u> in the deconfined phase interpretation: <u>meson melting</u> in quark gluon plasma
- many others ...

Erdmenger, Evans, I. K. and Threlfall, Review Paper (2007), EPJA