High Energy Scattering and the AdS/CFT Correspondence

Jochen Bartels

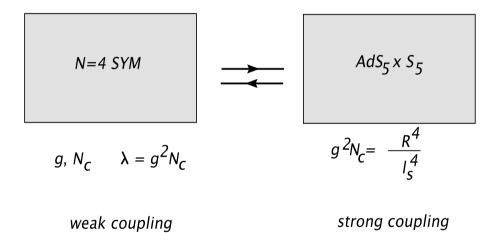
II.Inst.f.Theor.Physik, Univ.Hamburg

QCD: The Modern View of the Strong Interactions
Berlin, 4 - 9 October

- Introduction: realistic expectations
- High energy scattering of planar amplitudes
- The Pomeron in AdS/CFT
- Conclusions

Introduction

Frame of this talk is the AdS/CFT correspondence hypothesis:



On both sides expansion in $1/N_c$ (expansion in toplogy).

History: Regge limit stimulated string theory (Veneziano amplitudes), interesting to analyse high energy scattering amplitudes within the AdS/CFT duality.

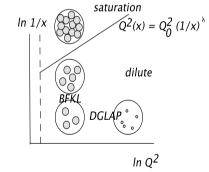
This talk: two steps

(a) scattering amplitudes in the planar limit (compare with Veneziano amplitudes). Main interest: n point amplitudes in N=4, guide for multiloop/multileg amplitudes in QCD, BDS formula.

Is N = 4SYM soluble: integrability?

(b) Vacuum exchange (Pomeron, cylinder): (Soft) Pomeron in hadron-hadron scattering is non-pertubative: need methods other the pQCD. But: (Soft) Pomeron is also sensitive to low-energy features of QCD (slope α' : chiral dynamics).

Hard Pomeron: in scattering of small-size projectiles (virtual photon) Soft Pomeron: in hadron-hadron scattering Transition in deep inelastic scattering (saturation, unitarization)

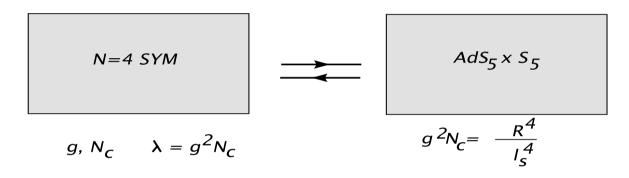


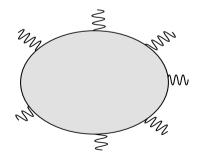
transition from hard to soft

AdS/CFT correspondence: first the hard Pomeron, unitarization. For soft Pomeron: need more sophisticated geometry on the string theory (modelling).

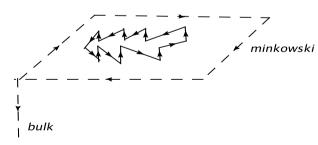
Planar scattering amplitudes at high energies

N=4, MHV amplitudes. Duality:





Compute planar amplitudes



Compute minimal surfaces Amplitude has exponential form

Gauge theory side: enormous activity in two loop calculations, beyond MHV.

String theory side: mimimal surfaces are hard to compute, a few cases are known (Alday, Maldacena).

Most remarkable: Bern-Dixon-Smirnow (BDS) formula for planar n-gluon scattering amplitude:

Remove color factors, factor out tree amplitude, IR singular:

$$tr(T^{a_1}...T^{a_n}) + noncycl.perm, \quad A_n = A_n^{tree} \cdot M_n(\epsilon)$$

$$\ln M_n = \sum_l a^l \left[\left(f^{(l)}(\epsilon) I_n(l\epsilon) + F_n(0) \right) + C^{(l)} + E_n^{(l)}[\epsilon] \right]$$

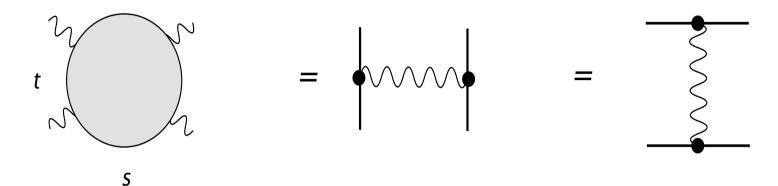
$$a = \frac{N_c \alpha}{2\pi} (4\pi e^{-\gamma})^{\epsilon}, \quad d = 4 - 2\epsilon$$

Based upon: universality of IR singularities (=poles in ϵ), and 1-loop calculation.

Several tests (Alday, Maldacena; Drummond, Korchemsky, Sokatchev; JB, Lipatov, Sabio-Vera): partly successful ($n \le 5$, partly disagreement $n \ge 6$).

This talk: high energy limit (Regge limit) of BDS formula:

Four-point function:

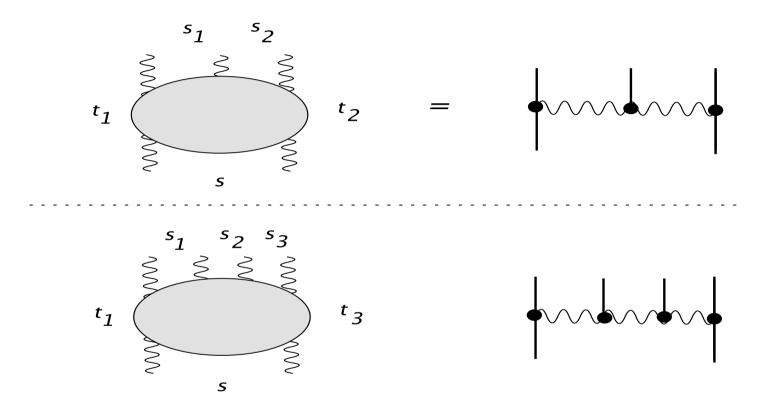


$$A_4(s,t) = \Gamma(t) \left(\frac{-s}{\mu^2}\right)^{\omega(t)} \Gamma(t) = \Gamma(s) \left(\frac{-t}{\mu^2}\right)^{\omega(s)} \Gamma(s)$$

All order gluon trajectory function, vertex function.

Comparison with Veneziano amplitude $B_4(s,t)$.

Five, six point functions:



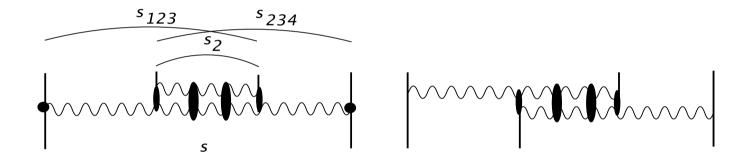
Same trajectory, vertex function, production vertex:

all seems to be consistent. But for $n \ge 6$:

Analytic structure:

scattering amplitudes = functions of several complex-valued variables: Steinmann relations

Comparison with leading-log calculations in QCD (JB, Lipatov,Sabio-Vera): disagreement for $2 \to 4$, $3 \to 3$,: piece is missing (beyond one loop) (absent also in Veneziano amplitudes).

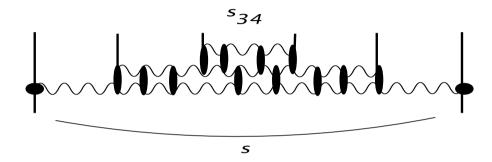


Visible in energy discontinuity or in another physical region:

$$s, s_2 > 0$$
, $s_{123}, s_{234} < 0$:

Special feature of this extra piece: integrability.

Go to multi-leg amplitudes n > 8, e.g.



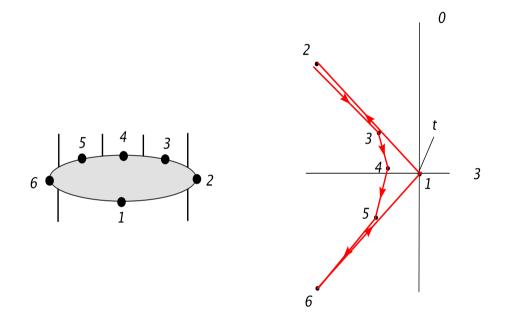
This Regge-cut piece, again, is visible in (double) energy discontinuities or in special physical regions. Dependence upon s_{34} :

$$A_8 \sim s_{34}^{-E_3}$$
, where $H_{3,open} \psi = E_3 \psi$

is the lowest energy of the BKP Hamiltonian describing the rapidity evolution in the t_3 channel. In the planar limit the t_3 channel is in a octet state: open chain $H_{3,open}$ is integrable (Lipatov).

On the string side:

High energy limit contours on the string side have characteristic spike



Surfaces not known fo general n.

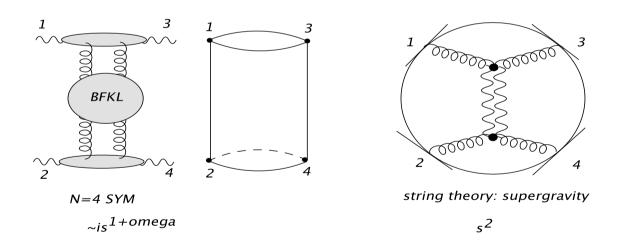
Analytic continuation of kinematic regions ← deformations of contours and minimal surfaces.

Study of these deformations might provide some guidance.

The Pomeron in AdS/CFT

A. The 'conservative' approach:

Testing gound: correlator of R-currents (global SU(4) symmetry): analogue of $\gamma^*\gamma^*$ -scattering in QCD. Elastic scattering: $< R_{\mu_1}(x_1)R_{\mu_2}(x_2)R_{\mu_3}(x_3)R_{\mu_4}(x_4)>$.



Basic message: BFKL in N=4 SYM is dual to the graviton in AdS_5

In more detail:

on the weak coupling side the BFKL amplitude

$$A(s,t)=is\intrac{d\omega}{2\pi i}\left(rac{s}{kk'}
ight)^{\omega}\Phi_{1}(Q_{A}^{2},k,q-k)\otimes G_{\omega}(k,q-k;k',q-k')\otimes\Phi_{2}(Q_{B}^{2},k',q-k')$$

Impact factors (for scalar currents) (Balitski; Cornalba et al.), characteristic BFKL function (Lipatov et al.) known in NLO:

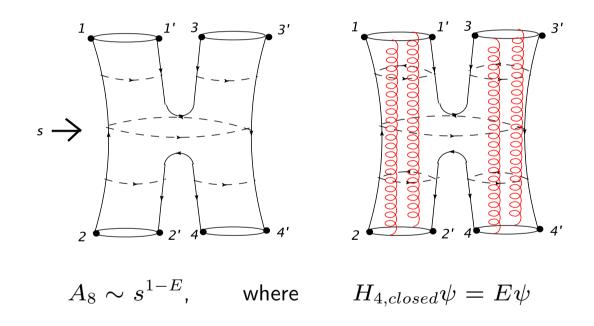
$$G_{\omega}(k,q-k;k',q-k') \sim \frac{1}{\omega - \chi(n,\nu)}$$

Impact factors for R-currents in N=4 SYM known in LO.

Connection between small x-limit and short distance limit (DIS): leading twist anomalous dimension near $\omega=j-1\approx 0$

$$A(s,t=0) \sim \frac{is}{Q^2} \int \frac{d\omega}{2\pi i} \left(\frac{s}{Q_1^2}\right)^{\omega} \int \frac{d\nu}{2\pi i} \left(\frac{Q_1^2}{Q_2}\right)^{\nu} \Phi_1(n,\nu) \frac{1}{\omega - \chi(\nu,0)} \Phi_2(n,\nu)$$

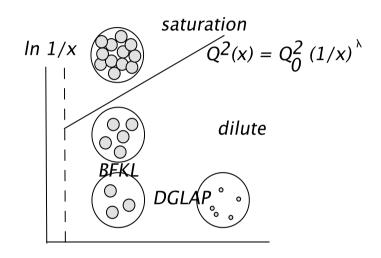
Important feature of BFKL: generalize from 2 to n>2 gluons, (LO) Hamiltonian of BKP states is integrable for large N_c . Where to find large- N_c BKP states: in multi-leg amplitudes, e.g. eight point correlator for $4\to 4$: (such an amplitude is not quite academic: heavy ion collisions)



E is the lowest eigenvalue of the energy spectrum of the 4 gluon BKP Hamiltonian (closed chain). Expect: when combined with short distance limit \rightarrow anomalous dimension of twist four operators.

Unitarization problem: as old as strong interactions.

Best understood in deep inelastic scattering:



In Q² transition from hard to soft

From large x, Q^2 to small x, Q^2 , three regions:

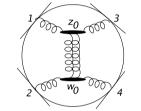
dilute (hard), saturation (dense), strong interaction (soft Pomeron).

Near the saturation region: vital role of triple Pomeron vertex (BK-kernel) Appealing physical picture

The strong coupling side:

the leading term (in $1/\lambda$) is given by supergravity (Witten diagram): graviton exchange. Calculation (JB et al) gives:

$$T_2 = s^2 \int dz_0 \int dw_0 \Phi(p_1^2, p_3^2, z_0) \Sigma(t, z_o, w_o) \Phi(p_2^2, p_4^2, z_0)$$



Limit of $p_1^2=p_3^2\gg p_2^2=p_4^2$: dominant region close to the boundary (z_0 small, r large): 'graviton \leftrightarrow hard Pomeron' lives close to the boundary'

First correction (Lipatov et al; Polchinski et al)

$$j = 2 - \frac{2}{\sqrt{\lambda}} + O(\frac{1}{\lambda})$$

Diffusion in $\ln r$ (Polchinski et al).

Unitarization:

problem worse than BFKL: single $\sim s^2$, double $\sim s^3$,...

Saturation (see below)?

Triple reggeized-graviton vertex: need string calculation, Witten diagrams too simple.

Integrability:

in analogy with weak coupling, study higher correlators $(n \ge 8)$, take combined short distance and henergy limit.

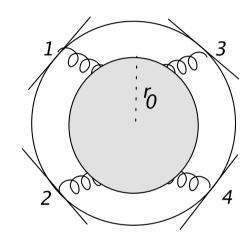
Conclusion for this part:

- intercept: function $j(\lambda)$ interpolates between weak and strong coupling: $1 < j(\lambda) < 2$. We know the first two corrections for $\lambda \to 0$, first correction at $\lambda \to \infty$. Connection with anomalous dimension.
- ullet impact factor: we know the first two terms at $\lambda \to 0$, the first term at $\lambda \to \infty$
- interactions of (reggeized) gravitons?

B. A more ambitious approach: a 'soft' Pomeron in a 'confining' theory (Polchinski et al)

Observation: 'soft' Pomeron comes from larger values of fifth coordinate z_0 . (smaller r):

Modify the $AdS_5 \times W$: boundary \rightarrow scale. Compute glueball, continue in t. Obtain slope parameter.



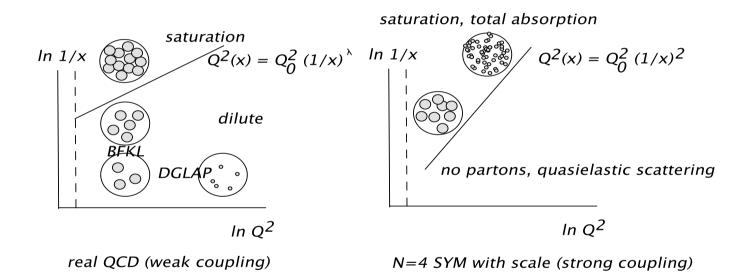
Questions:

how to connect this soft 'Pomeron' with the hard Pomeron (=reggeized graviton)? Is there 'saturation'?

C. Deep Inelastic scattering (Polchinski et al; Mueller, Hatta, lancu)

Goal: deep inelastic scattering for all x.

Framework: N=4 DIS on hot plasma, or DIS on dilaton field



Most striking results:

- no partons at finite \boldsymbol{x}
- saturation line $Q_s^2 \sim (T/x)^2$ (multiple graviton exchange).

Conclusions

We are at the beginning of exciting investigations.

A few tasks:

- Planar amplitudes:
 'Islands' of integrability; BDS formula
 - hope that study of Regge limit will help to get correct expression
- Pomeron (1): how does integrability on the gauge theory side translate to the string side? Interpolation from strong to weak coupling?
 - Pomeron (2): Unitarization. 'Saturation' in DIS: multiple graviton exchange?
 - Pomeron (3): soft Pomeron needs modelling, dual analogue of QCD.