
Large Scale Computer Algebra Calculations In Field Theory

J.A.M. Vermaseren

Nikhef

• Introduction

• Mincer algorithms

• Structure functions and Harmonic sums

• Multiple Zeta Values and Euler sums

• Relations

• The program

• Results → basis?

• Conclusions

Based on work done with J. Blümlein and D. Broadhurst.

Introduction

When we do calculations in Quantum Field Theory we have several op-
tions:

• Work non-perturbatively.

• Use a method that isn’t based on Feynman diagrams.

• Use Feynman diagrams.

In this talk we concentrate on the Feynman diagrams.

Here we have various categories, each of which is treated differently.

• All particles are massless and we have at most one loop. In this case
there are new methods (MHV) that can give impressive results, even
when the number of external legs becomes very large.

• Some or all particles have a mass and the number of loops is at most
one. This is a focal point of research when looking at the effects
of the weakly interacting particles, or when looking at heavy quark
production.

• We have more loops and maybe one or two mass scales, as in g − 2
calculations. The number of external legs is very limited.

• We have a large number of loops, but few external legs and no masses.

Here we will look at the last case. In this case the number of diagrams
can become very large. No methods exist yet to deal with clusters of
diagrams as a whole and hence the only way to deal with such calculations
is by using highly automated computer programs that process diagram
by diagram.
(We ignore here the possibility to add all diagrams of the same topology
before processing and then deal with them in one program).
This again requires very special techniques because we cannot assume
that the computer knows ‘smart tricks’.
What is needed is a fully automated set of algoritms that will work out
any diagram of the given category. This makes it nearly impossible to
use certain types of relations. Examples:

Easy:

1

(a + x)

1

(b + x)
→ (

1

(a + x)
−

1

(b + x)
)

1

(b − a)
, a 6= b

and one can add delta and theta functions when there is the risk that
a = b.
Nearly impossible:

ǫµνρσδκλ − ǫκνρσδµλ − ǫµκρσδνλ − ǫµνκσδρλ − ǫµνρκδσλ → 0

Hence one is confronted with a certain handicap from the smart side,
while at the same time there is an enormous advantage with respect to
speed and chance of making errors. The selection of the algorithms needs
to take this into account.
One has to be stupid in a smart way.

Mincer algorithms

The basic algorithm for two and three loop propagator diagrams with
only massless lines is integration by parts. We start with

∫
dDP

∂

∂Pµ
(RµI(n1, · · · , nm)) = 0

in which P is one of the loop momenta, I is a collection of propagators and
dotproducts with ni the powers of those objects, and R is any momentum,
preferably one of the loop momenta or the external momentum.
Working out the derivative gives useful identities in which we obtain
integrals with different values for the ni.

This is illustrated in the following graphical equation:

n5
k5

n1 n2

n3n4

=
1

D+k5−2n5−n1−n4
(

+n1
n5-1
k5

n1+1 n2

n3n4

− n1
n5
k5

n1+1 n2-1

n3n4

+n4
n5-1
k5

n1 n2

n3n4+1

− n4
n5
k5

n1 n2

n3-1n4+1

)

in which we have defined

n5
k5

n1 n2

n3n4

=
∫

dDp1 dDp2
S·pk5

5

(p2
1)n1(p2

2)n2(p2
3)n3(p2

4)n4(p2
5)n5

and used P → p5, R → p5 and S is any external momentum.

We see that we can eventually make one of the parameters n2, n3, n5 to
be zero, thereby removing one line and creating simpler integrals.
Using the IBP techniques we can reduce all two and three loop propagator
graphs to just three types of integrals. These integrals are known to
sufficient powers in ǫ = (4 − D)/2.
The massless propagator graphs lead to dimensionless answers (apart
from overal factors).

Structure functions and Harmonic sums

For structure functions one has a single parameter, usually Bjorken x.
The Q2 dependence is in the coupling constant and hence plays no direct
role in the evaluation of the Feynman diagrams. The extra parameter
makes the integrals much more complicated. One way to do them is by
making a Mellin transform:

f(N) =
∫ 1
0 dx xN−1f(x)

Now the variable is the (integer) N.

The first observation is that if we give N a value, like 2 or 4, we can
convert the calculation to a (more complicated) propagator calculation
as in (assuming that P·P = 0):

Q Q

1

1

1

1

9,8

1

1 13

=
∫
dDp1d

D
2 dDp3

(2P·p2)
8(2p7·p8)

3

(p2
1)(p

2
2)

9(p2
3)(p

2
4)(p

2
5)(p

2
6)(p

2
7)(p

2
8)

= (Q2)1−6ǫ(
2P·Q

Q2
)8 ×

(
1

56
ǫ−2 +

107

3360
ǫ−1 −

39

35
ζ3 +

436990847

326592000
)

This took 1.87 sec. with TFORM on a quad Xeon computer at 3.2 GHz.
(127 sec. with (an older version of) FORM on a P1000 computer.)

#define TOPO "la"

#define SCHEME "1"

#include- mincer.h

off statistics;

.global

Local F = Q.Q^-1*(2*p7.p8)^3*(2*P.p2)^8/p1.p1/p2.p2^9/p3.p3/p4.p4

/p5.p5/p6.p6/p7.p7/p8.p8;

#call harmo(P,Q,mncFFPP)

.sort

Multiply ep^3;

#call integral(‘TOPO’)

~~~Answer in the G-scheme

.sort

Multiply 1/2^8;

Print +s;

.end

F =

+ 436990847/326592000

+ 1/56*ep^-2

+ 107/3360*ep^-1

- 39/35*z3

;

0.18 sec + 6.49 sec: 6.67 sec out of 1.87 sec



This means that the program Mincer, written for the massless propaga-
tors can be used for calculating a number of Mellin moments. Because for
each moment the calculation becomes more time consuming by a factor
this has only been done up to about N = 16. These moments can then
be used to make a partial reconstruction of the function of Bjorken x.
Such a reconstruction is typically good for values x ≥ 1/Nmax.
To get the complete reconstruction one needs an infinite number of even
or odd values of N. Hence we need basically the complete function of N.
This requires a much more complicated scheme than the Mincer scheme
that involves more equations than just the integration by parts. One
such relation is:



E
n

1
1

1

11

=
1

Ñ+1−n
( E

n

1 1

12

+ E
n

2 1

11

− E
n

1 1

12

+
2P·q

q·q
( (D−4−Ñ−E+n) E

n

1
1

1

11

+E E+1
n

1
1

0

11

− E E+1
n

1 1

11

− E
n

1 1

12

+ n E
n-1

1 1

11

− n E
n-1

1 1

11

) )

What we see is that with more variables there is more room for artistic
expression. The red line is the P-flow of the parton through the diagram.
After about N derivatives it it is set to zero.
(Formula from a paper by S.O.Moch and J.V.)



One needs to introduce also a category of functions that will be large
enough to contain the answers. These functions are the Harmonic sums.
They are defined by:

Sm(N) =
N∑

i=1

1

im

S−m(N) =
N∑

i=1

(−1)i

im

Sm,m2,···,mp(N) =
N∑

i=1

1

im
Sm2,···,mp(i)

S−m,m2,···,mp(N) =
N∑

i=1

(−1)m

im
Sm2,···,mp(i)

This is a notation that is also suitable for computers. There is a difference
here between various definitions as there are also people using i − 1 for
the argument of the S in the recursive formula. Those sums we call
Z-sums.



Eventually a scheme can be devised to break down all three loop graphs
either to simpler integrals or to integrals determined by a difference equa-
tion. With the ansatz that the solution of these equations is a linear
combination of Harmonic sums, nearly all of them can be converted into
a large set of linear equations which can be solved.
There is one object that is not in this category but it can be taken
separately (it is rather rare) and cancels in the end between the diagrams.
The above method is extremely time consuming, both in designing the
algorithms and in the running on the computer. This was improved
considerably by tabulating intermediate results. In the final runs there
were about 3 Gbytes of tabulated integrals. Special features for this were
invented for FORM to deal with this. These are called the tablebases.



Multiple Zeta Values and Euler sums

When the results of the calculations in Mellin N-space have to be con-
verted to results in Bjorken x-space one has to perform a so-called inverse
Mellin transformation. The functions we will obtain in x-space had to
be defined as well. They are called Harmonic polylogarithms. Their
definition is:



The harmonic polylogarithms are defined by:

H(0; x) = ln x

H(1; x) =
∫ x
0

dx′

1 − x′
= − ln(1 − x)

H(−1; x) =
∫ x
0

dx′

1 + x′
= ln(1 + x)

and the functions
f(0; x) = 1

x, f(1; x) = 1
1−x, f(−1; x) = 1

1+x
If ~aw is an array with w elements, all with value a, then:

H(~0w; x) =
1

w!
lnw x

H(a, ~mw; x) =
∫ x
0 dx′ f(a; x′) H(~mw; x′)



The harmonic polylogarithms form a ‘shuffle’ algebra as in

Ha,b(x)Hc,d(x) = Ha,b,c,d(x) + Ha,c,b,d(x) + Ha,c,d,b(x)

+Hc,a,b,d(x) + Hc,a,d,b(x) + Hc,d,a,b(x)

The harmonic sums form a ‘stuffle’ algebra which is based on properties
of sums:

Sa,b(N)Sc,d(N) = Sa,b,c,d(N) + Sa,c,b,d(N) + Sa,c,d,b(N)

+Sc,a,b,d(N) + Sc,a,d,b(N) + Sc,d,a,b(N)

−Sa&c,b,d(N) − Sa,c&b,d(N) − Sa,c,b&d(N)

−Sc,a,b&d(N) − Sc,a&d,b(N) + Sa&c,b&d(N)

For the Z-sums the minus signs should be replaced by plus signs.
The stuffle addition & is defined by

a&b = σaσb(|a| + |b|)

with σa being the sign of a and σb being the sign of b.



We can define a unified notation as in:

H0,0,1,0,−1 = H3,−2

S7,−2,1 = S0,0,0,0,0,0,1,0,−1,1

The notation with the 0, 1,−1 we call integral notation and the other
notation we call sum notation. The number of indices in the integral
notation is the weight, and the number of indices in the sum notation is
the depth.
For non-alternating sums we have Z~p(∞) = H~p(1) With alternating
sums there can be signs. Trivially programmable.
The integral notation allows us to see how many of these sums and in-
tegrals exist. There are 2 3w−1 sums and 3w integrals for weight w.
(2w−1, 2w when we exclude the negative indices).



For the inverse Mellin transform of the three loop structure functions
we have to invert weight 6 sums. Let us have a look at one of them
(S−1,3,−2(N)):

#define SIZE "6"

#include- harmpol.h

Off statistics;

.global

Local F = S(R(-1,3,-2),N);

#call invmel(S,N,H,x)

Print +f +s;

.end

F =

- sign_(N)*H(R(1,0,0),x)*Htab2(0,-1)*[1+x]^-1

- sign_(N)*Htab5(0,-1,0,0,-1)*[1+x]^-1

- sign_(N)*Htab5(0,-1,0,0,1)*[1+x]^-1

+ sign_(N)*Htab5(0,-1,1,0,0)*[1+x]^-1

- 2*sign_(N)*Htab5(0,0,-1,0,1)*[1+x]^-1

- 3*sign_(N)*Htab5(0,0,0,-1,1)*[1+x]^-1

- 3*sign_(N)*Htab5(0,0,0,1,-1)*[1+x]^-1



- sign_(N)*Htab5(0,0,1,0,-1)*[1+x]^-1

+ sign_(N)*Htab5(0,1,-1,0,0)*[1+x]^-1

+ sign_(N)*Htab5(0,1,0,-1,0)*[1+x]^-1

+ sign_(N)*Htab5(0,1,0,0,-1)*[1+x]^-1

+ sign_(N)*Htab5(1,0,-1,0,0)*[1+x]^-1

+ 2*sign_(N)*Htab5(1,0,0,-1,0)*[1+x]^-1

+ 3*sign_(N)*Htab5(1,0,0,0,-1)*[1+x]^-1

- H(R(-1),x)*Htab4(0,0,-1,0)*[1-x]^-1

+ H(R(-1,-3,0),x)*[1-x]^-1

- H(R(-1,0),x)*Htab3(0,-1,0)*[1-x]^-1

- H(R(-1,0,0),x)*Htab2(-1,0)*[1-x]^-1

+ 6*Htab5(-1,-1,0,0,0)*[1-x]^-1

+ 5*Htab5(-1,0,-1,0,0)*[1-x]^-1

+ 3*Htab5(-1,0,0,-1,0)*[1-x]^-1

+ 4*Htab5(0,-1,-1,0,0)*[1-x]^-1

+ 3*Htab5(0,-1,0,-1,0)*[1-x]^-1

+ 2*Htab5(0,0,-1,-1,0)*[1-x]^-1

+ Htab5(0,0,-1,0,-1)*[1-x]^-1

+ Htab6(-1,0,-1,0,0,-1)

+ Htab6(-1,0,-1,0,0,1)

+ 2*Htab6(-1,0,0,-1,0,1)

+ 3*Htab6(-1,0,0,0,-1,1)

+ 3*Htab6(-1,0,0,0,1,-1)



+ Htab6(-1,0,0,1,0,-1)

+ 2*Htab6(0,-1,-1,0,0,-1)

+ 2*Htab6(0,-1,-1,0,0,1)

+ Htab6(0,-1,0,-1,0,-1)

+ 3*Htab6(0,-1,0,-1,0,1)

+ 2*Htab6(0,-1,0,0,-1,-1)

+ 5*Htab6(0,-1,0,0,-1,1)

+ 3*Htab6(0,-1,0,0,1,-1)

+ Htab6(0,-1,0,1,0,-1)

+ 4*Htab6(0,0,-1,-1,0,1)

+ 5*Htab6(0,0,-1,0,-1,1)

+ 3*Htab6(0,0,-1,0,1,-1)

+ Htab6(0,0,-1,1,0,-1)

+ 6*Htab6(0,0,0,-1,-1,1)

+ 3*Htab6(0,0,0,-1,1,-1)

;

The Htab objects are Hpl’s in one in which for instance Htab6(0,0,0,-1,
1,-1) stands for H−4,1,−1(1) and they are related to the sums in infinity.



What we notice is that there are many terms in which we have the sums
in infinity or the Hpl’s in one. As Euler knew already, there are relations
between the sums in infinity as in:

ζ6 =
8

35
ζ3

2

ζ5,1 =
6

35
ζ3

2
−

1

2
ζ2

3

ζ4,2 = −
32

105
ζ3

2
+ ζ2

3

ζ4,1,1 =
23

70
ζ3

2 − ζ2

3

ζ3,3 = −
4

35
ζ3

2 +
1

2
ζ2

3

ζ3,2,1 = −
29

30
ζ3

2 + 3ζ2

3

ζ3,1,2 =
53

105
ζ3

2
−

3

2
ζ2

3

ζ2,4 =
10

21
ζ3

2
− ζ2

3

ζ2,2,2 =
3

70
ζ3

2

ζ2,1,3 = −
13

70
ζ3

2
+ ζ2

3



These come from the algebra relations for the sums and the polyloga-
rithms taken in infinity, resp one. These are different relations and hence
they can be combined to express all these Euler sums in terms of a min-
imal set. When this is done the answer to the inverse Mellin problem we
showed above becomes:



#define SIZE "6"

#include- harmpol.h

Off statistics;

.global

Local F = S(R(-1,3,-2),N);

#call invmel(S,N,H,x)

Print +f +s;

.end

F =

- 51/32*[1-x]^-1*z5

+ 3/4*[1-x]^-1*z2*z3

- 7/2*s6

+ 51/32*z5*ln2

- 33/64*z3^2

+ 9/4*z2*z3*ln2

+ 121/840*z2^3

- 51/32*sign_(N)*[1+x]^-1*z5

+ 3/4*sign_(N)*[1+x]^-1*z2*z3

- 1/2*sign_(N)*H(R(1,0,0),x)*[1+x]^-1*z2

+ 21/20*H(R(-1),x)*[1-x]^-1*z2^2

+ H(R(-1,-3,0),x)*[1-x]^-1

+ 3/2*H(R(-1,0),x)*[1-x]^-1*z3

+ 1/2*H(R(-1,0,0),x)*[1-x]^-1*z2

;



This is much simpler and much more informative.
In order to be able to give meaningful answers to the calculation of
objects like beta functions and anomalous dimensions we need to know
the relations between these constants. In its generality this turns out to
be a formidable mathematical problem that is as of now unsolved.
In the rest of this talk we are going to see how far we can get with it.
Terminology:
The sums that do not contain the (−1)i are called non-alternating sums
or Multiple Zeta Values (MZVs). The sums that involve (−1)i are called
alternating or Euler sums.
In general one can use even higher roots of unity than just the second
root. According to Broadhurst Feynman diagrams can eventually involve
up to the sixth root of unity. Very little is known about these functions.



Relations

Unfortunately there is no known constructive way to take one of these
constants and express it into a basis. Already there are problems in
determining what constitutes a good basis.
The only two ways to express them in an independent set that are cur-
rently known are:

• Write down all algebraic relations for these objects and solve the
system of equations. Then tabulate all MZVs (Euler sums) and use
table substitution afterwards.

• Guess a relation and fit the coefficients with a program like PSLQ
after computing all objects in the relation numerically to a very large
number of digits. Broadhurst has done much of this in the 1990’s.



For the MZVs the only algebraic relations that are known are the shuffle
and the stuffle relations we saw before. On does have to include the
relations that involve divergent sums and integrals. This divergence is
however very mild (logarithmic) and can easily be regularized.
For the Euler sums more relations exist that add nontrivial information.
Let us start with:

Sn1,···,np(N) = 2n1+···+np−p ∑
±

S±n1,···,±np(2N)

These are called the doubling relations. When n → ∞ and the sums
are finite, this gives useful relations.
For the Euler sums there is yet another category of relations which we call
the generalized doubling relations (GDR’s). They are based on similar
principles but we have only a computer algorithm to generate them. No
closed formula.



The doubling relations are necessary for weights of 8 and higher. The
generalized doubling relations are needed for weight 11 and higher. They
have another useful property which we see already at weight 6:

Z−4,−2 = −H−4,2 =
97

420
ζ3
2 −

3

4
ζ2
3

To derive this equation with shuffles and stuffles alone the number of
relations one needs is enormous:

depth shuffles stuffles
2 11 8
3 52 19
4 72 41

Using the GDR’s one needs only relations involving depth 2 (or lower)
objects (and there are only 6 GDR’s at depth 2, weight 6).



With the GDR’s we can calculate relations for objects up to a given
depth without needing equations for greater depth. This will allow us to
obtain some interesting relations.
We have not seen any violations of this rule.



It is possible to use the stuffle relations to express the divergent sums in
terms of powers of the basic divergence (S1(∞)) and finite sums of lower
weights. All divergent sums have the first index being one. Hence we
need to compute only 4 3w−2 Euler sums. In the case of the MZVs there
is an additional duality relation and the number of MZVs that we need
to determine is 2w−3.

For the Euler sums a reasonable basis has been conjectured by Broad-
hurst. It is made from all sums of a given weight that have negative odd
indices and the string of the indices form a Lyndon word.
A Lyndon word is a string of ’letters’ that is uniquely minimal when all
its cyclic permutations are considered.
Example:

H−7 H−5,−1,−1 H−3,−3,−1 H−3,−1,−1,−1,−1

This assumes that we express all sums in terms of products of lower
weight objects and as few objects of the same weight as possible.



For the MZVs the situation is that there is a conjectured basis made
from all Lyndon words that consist of 2’s and 3’s (which add up to the
weight). This turns out to be a very unpleasant basis from the viewpoint
of computations.
We prefer a basis in which the depth of the elements is minimal. In
that case it seems that it suffices to consider only relations up to W/3 to
determine the basis.
Our computer programs automatically construct such a basis, but it is
far from unique.
We have found however one class of bases with very nice properties. We
will see it in due time.



.

The program

Trying to solve large systems of equations can be quite a challenge. And
because we want to reach the limits of what is possible we need the most
powerful program we can lay our hands on. Of course we have FORM,
but there is also the newer TFORM that can make use of multi-core
machines. This gives added power.
We use the MZV program as a test under extreme conditions for TFORM.
This has enabled us to

• Test and improve TFORM.

• Improve the program for solving sets of equations.

• Get more results on MZVs (Euler sums).



The first thing to consider is that it may not be possible to have all
equations in memory simultaneously. Hence we should select a method
that doesn’t need this.
So how do we solve 5 × 106 equations with 2 × 106 unknowns?



We would like to go beyond what M. Kaneko, M. Noro and K. Tsurumaki
managed. They treated this as a matrix problem (with a size of 2W−3 ×
2W−4) and went to W=20. Using calculus modulus a 15 bits prime they
needed about 18 Gbytes of memory and could not go beyond this.

W size time
16 72M 150
17 288M 880
18 1.2G 5000
19 4.6G 33000
20 18G 245000

Parameters of the Kaneko et al program on an 8 core computer.

The program managed to determine the size of a basis. The size was
according to the Zagier conjecture (N(W ) = N(W − 2) + N(W − 3)).
It should be noted that the matrix is sparse. In our program the weight
20 expression has at its worst 4158478 terms (100 Mbytes) which means
that only one in 2000 entries of the matrix would not be zero.



We start generating a master expression which contains one term for each
sum that we want to compute. For the MZVs of weight 4 this expression
looks in computer terms like

FF =

+E(0,0,0,1)*(H(0,0,0,1))

+E(0,0,1,1)*(H(0,0,1,1))

+E(0,1,0,1)*(H(0,1,0,1));

We have used already that we will only compute the finite elements and
that there is a duality that allows us to eliminate all elements with a
depth greater than half the weight. When the depth is exactly half the
weight we choose from a sum and its dual the element that comes first
lexicografically.



We pull the function E outside brackets. The contents of a bracket is
what we know about the object indicated by the indices of the function
E. At first this is all trivial knowledge.
Assume now that we generate the stuffle relation

H0,1H0,1 = H0,0,0,1 + 2H0,1,0,1

The left hand side can be substituted from the tables for the lower weight
MZVs. Hence it becomes ζ2

2 . The right hand side objects are replaced by
the contents of the corresponding E brackets in the master expression.
These are for now trivial substitutions. From the result we generate the
substitution

id H(0,1,0,1) = z2^2/2-H(0,0,0,1)/2;



We apply this to the master expression. Hence the master expression
becomes

FF =

+E(0,0,0,1)*(H(0,0,0,1))

+E(0,0,1,1)*(H(0,0,1,1))

+E(0,1,0,1)*(z2^2/2-H(0,0,0,1)/2);

Let us now generate the corresponding shuffle relation:

H0,1H0,1 = 4H0,0,1,1 + 2H0,1,0,1

and replace the right hand side objects by the contents of the corre-
sponding E bracket in the master expression. This gives

ζ2
2 = 4H0,0,1,1 + ζ2

2 − H0,0,0,1

which leads to the substitution

id H(0,0,1,1) = H(0,0,0,1)/4;



We obtain

FF =

+E(0,0,0,1)*(H(0,0,0,1))

+E(0,0,1,1)*(H(0,0,0,1)/4)

+E(0,1,0,1)*(z2^2/2-H(0,0,0,1)/2);

We also need the divergent shuffles and stuffles. This is done by including
the shuffles involving the basic divergent object and breaking down the
multiple divergent sums with the stuffle relations as in:

H1H0,0,1 = 2H0,0,1,1 + H0,1,0,1 + H1,0,0,1

= −H0,0,0,1 + H0,0,1,1 + H0,1,0,1 + H1H0,0,1;

Substituting from the master expression we obtain the relation

0 = −
5

4
H0,0,0,1 +

1

2
ζ2
2



Hence the substitution

id H(0,0,0,1) = z2^2*2/5;

and finally the master expression becomes

FF =

+E(0,0,0,1)*(z2^2*2/5)

+E(0,0,1,1)*(z2^2/10)

+E(0,1,0,1)*(z2^2*3/10);

Now we can read off the values of all MZVs of weight 4 that we went to
compute. All other elements (dual or divergent) can be obtained from
these by trivial operations that involve the use of one or two relations
only.



In practise we are a bit more sophisticated. It is noticed that the master
expression can become rather big and hence to make a single substitution
on it for each equation gives much sorting overhead. Therefore we group
the equations and first diagonalize this group as much as possible. Then
we substitute the results of the entire group into the master expression.
When the group has 1000 elements this would give 1000 substitution
statements. The result would be 1000 pattern matchings per term. This
is solved by using tables which FORM can use internally in a binary tree
search. The result is a rather fast program.
The size of the group is a function of the size of the problem. The optimal
value is more or less related to the square root of the number of variables.
The whole program for the MZVs is only about 600 lines including com-
mentary (400 lines in a stripped version). For the Euler sums it is a few
hundred lines longer (the procedure for the generalized doubling relations
is almost 200 lines).



The major problem in the program is the order in which we feed in the
equations. This can make a big difference in both the execution time and
the space used (orders of magnitude!).

The stuffles don’t cause too many troubles, but the shuffles are rather dif-
ficult to control. It is extremely hard to ”block diagonalize” this system.

We have a heuristic ordering of the equations that we couldn’t improve
upon. Yet it still contains inefficiencies. This is shown in the following
graphs in which we have on the x-axis the number of the module and on
the y-axis the size of the output expression in that module.



MZVs

Complete results

W = 22



MZVs

Modular arithmetic

Basis only

W = 26, D = 8



Complete run

5-shuffle
6-stuffle

Shuffles at depth 5

Stuffles at depth 6 Shuffles at depth 6

Size of output expression for each module during phases of the Euler W=18,D=6 run.



We will run three types of programs.

1. A full expression of all MZVs in a minimal basis.

2. An expression of all MZVs in a minimal basis modulus a prime num-
ber. We drop all terms that are products of lower weight objects.

3. An expression of all MZVs in a minimal basis modulus a prime num-
ber. We drop all terms that are products of lower weight objects. We
consider only elements up to a given depth D.



We run most of our programs on the computer of the theory group in
Karlsruhe. This machine has 24 nodes, each node has 8 Xeon cores at
3 GHz with 32 Gbytes of memory and a 4 Tbyte disk. One of these
nodes has been reserved for development work with TFORM and was
hence used most of the time for this project. The other nodes were just
running unrelated programs.
We also used some of the blade computers at DESY Zeuthen (8 Xeon
cores at a somewhat lower frequency and 16 Gbytes of memory) and the
main development machine for TFORM at Nikhef which has 4 Opterons
at 2.3 GHz, 16 Gbytes of memory and a 1.5 Tbytes disk.
The last computer has also been used to compose the data mine.



.

Euler Sums

The Euler sums need the doubling (W ≥ 8) and the generalized doubling
(W ≥ 11) formulas. They are also needed if we want to obtain results
up to a given depth.

W variables eqns remaining size output time
4 36 57 1 4.3K 2.0K 0.06
5 108 192 2 21K 8.9K 0.12
6 324 665 2 98K 42K 0.37
7 972 2205 4 472K 219K 1.71
8 2916 7313 5 2.25M 1.15M 7.78
9 8748 23909 8 11M 6.3M 50
10 26244 77853 11 58M 36M 353
11 78732 251565 18 360M 213M 3266
12 236196 809177 25 3.1G 1.29G 47311

The size of the outputs becomes a bigger problem than the running time.



We have also runs with restricted depth. The most important ones are
where we limit the depth to 6 or less. In this case we have used modu-
lar arithmetic and dropped all terms that are products of lower weight
objects in an all out attempt to obtain W = 18, D ≤ 6.

weight constants remaining running time [sec] output [Mbyte]
13 56940 22 2611
14 90564 37 12716 51
15 138636 35 55204 87
16 205412 66 206951 214
17 295916 55 789540 288
18 416004 109 2622157 711

The last run was rather impressive. It took one month on an 8 core Xeon
machine, working its way through a combined total of more than 7×1012

terms or 7 TeraTerms!
Runs to depth 5 are to weight 21 and runs to depth 4 are to weight 30.



MZVs

In the first sequence of programs we try to see how far we can get. We
use a 31 bits prime (2147479273) and try to determine a basis. We drop
all terms that are products of lower weight objects. We want expressions
for all MZVs of the given weights in terms of the basis.

W Group size output CPU time Eff.
16 128 1.7M 1.2M 300 57 5.25
17 256 5.6M 3.2M 713 134 5.32
18 256 14.4M 7.2M 2706 465 5.82
19 512 39M 19M 6901 1206 5.72
20 512 104M 45M 30097 4819 6.25
21 1024 239M 114M 75302 12379 6.08
22 1024 767M 280M 449202 65644 6.84
23 2048 2.17G 734M 992431 151337 6.56
24 2048 8.04G 1.77G 9251325 1268247 7.29



At this point we noticed that all basis elements had a depth that fulfilled
D ≤ W/3. Hence assuming that this will be always the case we made a
few more runs. And in addition we made some ‘incomplete’ runs.

W D size output CPU real Eff.
23 7 1.55G 89M 61447 9579 6.41
24 8 673M 380M 536921 72991 7.36
25 7 6.37G 244M 369961 50197 7.37
26 8 38.3G 1160M 4786841 651539 7.35
27 7 12.7G 914M 2152321 277135 7.77
28 6 2.88G 314M 235972 30960 7.62
29 7 41.0G 3007M 8580364 1112836 7.71
30 6 6.27G 658M 829701 106353 7.80

It shouldn’t come as a great surprise that all the results of the above runs
are in agreement with the Zagier and Broadhurst-Kreimer conjectures.
More later.....



We also made complete runs. That is: over the rationals and including
products of lower weight objects. This gave the following:

W size output num CPU real Eff. Rat.
16 10.9M 10.6M 21 254 59 4.29 1.05
17 30M 29M 19 690 149 4.62 1.11
18 86M 77M 25 3491 700 4.98 1.51
19 218M 205M 27 9460 1855 5.10 1.54
20 756M 552M 31 65640 11086 5.92 2.30
21 1.63G 1.55G 39 165561 27771 5.96 2.24
22 8.05G 4.00G 36 2276418 326489 6.97 4.97

It should become clear by now that the size of the output becomes a
major obstacle. To store millions of expressions, each of them with quite
a number of terms, will take Gigabytes.



Fill htable22(0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1,0,1,1)=229121/1728*

z14z3z1z1z2z1+173609/576*z14z3z1z2z1z1+15692195/31104*

z14z3z2z1z1z1+3726961/31104*z14z4z1z1z1z1-56339/1152*z14z5z1z2

-3378973/13824*z14z5z2z1+1007419717/2488320*z14z6z1z1-3423/16*

z15z2z1z2z1z1+2073365/1296*z15z3z1z1z1z1-307559/216*z15z4z1z2-

666657535/165888*z15z4z2z1+2485272541/1658880*z15z5z1z1-

502565387/31104*z16z2z1z1z1z1-8240323/1728*z16z3z1z2-

50468588359/3317760*z16z3z2z1-4457267917/829440*z16z4z1z1-

188177646093889/8599633920*z16z6+193151925403/19906560*

z17z3z1z1+6998148491689/13271040*z18z2z1z1+5830492751924959/

6879707136*z18z4-64399622164350811/1911029760*z20z2-1415173/

43200*z5z3z3^2-141/4*z7z3*z8z2z1z1+15765715/62208*z7z3*z9z3+

108/25*z5z3*z5z3z3z3+2332219/48600*z5z3*z9z5+654535363/5702400

*z5z3*z11z3-30606548603/921600*z11*z5z3z3+4674331597474072633/

57330892800*z11^2+3646960903267/217728000*z9*z5z5z3-

26283756319/1451520*z9*z7z3z3+227618177777097021133/

1504935936000*z9*z13-54161081/10368*z7*z10z2z1z1z1-14895806515/

4644864*z7*z7z5z3+1810659173/497664*z7*z9z3z3+

14449204246820162557/120394874880*z7*z15+7516571189/1126400*

z7^2*z5z3-4571/5*z5*z5z3z3z3z3-27702313/5184*z5*z12z2z1z1z1+

1897913010697639/388949299200*z5*z7z5z5-737558452534697/

155579719680*z5*z7z7z3-8678023289443/13891046400*z5*z9z5z3+

65728422985853/11112837120*z5*z11z3z3+185458251647/136857600*

z5*z9*z5z3+655173768451/34836480*z5*z7*z7z3+

8980494081229019842921/134420877803520*z5*z17-3819/4*z5^2*

z8z2z1z1-271512575762737/20836569600*z5^2*z9z3-

15383546912254681/55564185600*z5^3*z7-2969/8*z3*z12z4z1z1z1+

126/25*z3*z5z3z5z3z3-163253/400*z3*z5z5z3z3z3+5677/16*z3*

z7z3z3z3z3-69740687/10368*z3*z14z2z1z1z1-374706432302269505/

41015642443776*z3*z7z7z5+559257961960828567/109863327974400*z3

*z9z5z5-675929428026804667/219726655948800*z3*z9z7z3+

472645097440330207/97656291532800*z3*z11z5z3+17405218743810383/

2048733388800*z3*z13z3z3+186/25*z3*z5z3*z5z3z3+560126822557/

8294400*z3*z11*z5z3+241944929861/4976640*z3*z9*z7z3-48533/32*

z3*z7*z8z2z1z1+3258424132907/44789760*z3*z7*z9z3+32205/16*z3*

z5*z5z3z3z3+62730931353098707/4069012147200*z3*z5*z9z5-

211693794294616819/4882814576640*z3*z5*z11z3-117303745103293/

164229120*z3*z5*z7^2-3785404660891098517/4394533118976*z3*z5^2

*z9-9794819446662314742864371/109375046516736000*z3*z19-150567/

1120*z3^2*z5z5z3z3+37369/224*z3^2*z7z3z3z3-76731/64*z3^2*

z12z2z1z1+5836777489/4257792*z3^2*z11z5-631656298061/56609280*

z3^2*z13z3-24/5*z3^2*z5z3^2-1476536914610227/4269957120*z3^2*

z7*z9-940205/1728*z3^2*z5*z5z3z3-63798454917713/181149696*z3^2

*z5*z11+89314457/907200*z3^3*z5z5z3-4391335/36288*z3^3*z7z3z3-

102881298198157/1045094400*z3^3*z13+2015873/25920*z3^3*z5*z5z3

+4771/112*z3^4*z7z3+178901285/1306368*z3^4*z5^2+129247787/

466560*z3^5*z7-188/5*z2*z5z3z3z3z3z3-838*z2*z14z2z1z1z1z1-

400090555909/130636800*z2*z7z3z5z5-860982225443/104509440*z2*

z7z7z3z3-410971121201/87091200*z2*z7z5z5z3+432991955441/

55987200*z2*z9z3z5z3-5561422085/1119744*z2*z9z5z3z3+

30038614163/2488320*z2*z11z3z3z3+12317476820806379/11287019520

*z2*z13z7-4814984387/46656*z2*z16z2z1z1-26973572103166541417/

3386105856000*z2*z15z5+650628965993715945353/11512759910400*z2

*z17z3+2703067/16128*z2*z7z3^2+15297217/51840*z2*z5z3*z9z3-

1967338523/116640*z2*z9*z5z3z3+4439711059374396945289/

3837586636800*z2*z9*z11+203331234901/16329600*z2*z7*z5z5z3-

2245163981/163296*z2*z7*z7z3z3+172861806934439936513/

213199257600*z2*z7*z13-2530*z2*z5*z10z2z1z1z1+221934828641/

37324800*z2*z5*z7z5z3-185137871143/18662400*z2*z5*z9z3z3+

2356857770584504644547037/6120950685696000*z2*z5*z15-

8784777689/466560*z2*z5*z7*z5z3-29339484871/12441600*z2*z5^2*

z7z3-946617250799/97977600*z2*z5^4+4388/5*z2*z3*z5z3z3z3z3-

2050*z2*z3*z12z2z1z1z1-2515919247697/1620622080*z2*z3*z7z5z5-

5508608353973/1620622080*z2*z3*z7z7z3-65616653437/19293120*z2*

z3*z9z5z3+4317757951/602910*z2*z3*z11z3z3+2459401/2880*z2*z3*

z9*z5z3-5826659/2268*z2*z3*z7*z7z3+1685897928474783669523733/

19824227181158400*z2*z3*z17-3112*z2*z3*z5*z8z2z1z1-

1913867931511/347276160*z2*z3*z5*z9z3-12126144556601/

2083656960*z2*z3*z5^2*z7-1086/5*z2*z3^2*z5z3z3z3-4867384441/

1088640*z2*z3^2*z9z5+71577340969/3991680*z2*z3^2*z11z3+

11050634658317/143700480*z2*z3^2*z7^2+449759798507/4490640*z2*

z3^2*z5*z9+128*z2*z3^3*z5z3z3-5793264895/139968*z2*z3^3*z11-

207/5*z2*z3^4*z5z3-162/5*z2*z3^5*z5+27/5*z2^2*z12z2z1z1z1z1-

984359/75600*z2^2*z7z5z5z1+2137981343/2721600*z2^2*z5z5z5z3-

11370756889/1814400*z2^2*z7z5z3z3+1301016437/233280*z2^2*

z9z3z3z3-7911180517/155520*z2^2*z14z2z1z1+336721679218271/

4528742400*z2^2*z13z5-63062146664878129/62705664000*z2^2*z15z3

+6644509/43200*z2^2*z5z3*z7z3-38514635023952878361/

1630347264000*z2^2*z9^2-15429815879/1944000*z2^2*z7*z5z3z3-

8274399031910863279/271724544000*z2^2*z7*z11+4208229059/544320

*z2^2*z5*z5z5z3-658253387/77760*z2^2*z5*z7z3z3-

8720289305450158267/952528896000*z2^2*z5*z13-50810851429/

5443200*z2^2*z5^2*z5z3+999/5*z2^2*z3*z10z2z1z1z1-45306816419/

2268000*z2^2*z3*z7z5z3+571783303/30375*z2^2*z3*z9z3z3+

987475763552340453762817/127441460450304000*z2^2*z3*z15-

670666193/72000*z2^2*z3*z7*z5z3-131835349/25920*z2^2*z3*z5*

z7z3+73744749319/6531840*z2^2*z3*z5^3+1593/10*z2^2*z3^2*

z8z2z1z1-5617847/40320*z2^2*z3^2*z9z3+113181386863/2177280*

z2^2*z3^2*z5*z7+186543726721/6531840*z2^2*z3^3*z9-951/100*z2^2

*z3^6+24711581/15120*z2^3*z5z5z3z3-234965329/136080*z2^3*

z7z3z3z3-146515315/6048*z2^3*z12z2z1z1-435261786095987/

7185024000*z2^3*z11z5+2456425078110467/7547904000*z2^3*z13z3+

12415031/252000*z2^3*z5z3^2+117865176559161139/1046139494400*

z2^3*z7*z9-226177577/45360*z2^3*z5*z5z3z3+

539396168698063586369/212366317363200*z2^3*z5*z11+1568719081/

661500*z2^3*z3*z5z5z3-811187497/317520*z2^3*z3*z7z3z3-

2684093632897050776681/953087845248000*z2^3*z3*z13-6731243/

2800*z2^3*z3*z5*z5z3+1080509/15120*z2^3*z3^2*z7z3+2009725/168*

z2^3*z3^2*z5^2+570093989/52920*z2^3*z3^3*z7+428519309/105000*

z2^4*z5z3z3z3+20548647742626947/411505920000*z2^4*z9z5-

910144972791054017/6035420160000*z2^4*z11z3-

13735751558384156149/12070840320000*z2^4*z7^2-

94688695713426099127/58342394880000*z2^4*z5*z9-141084539/78750

*z2^4*z3*z5z3z3+140544106016863793716739/2601929817527040000*

z2^4*z3*z11+17966741/252000*z2^4*z3^2*z5z3+5233954847/13608000

*z2^4*z3^3*z5-89747783/12474*z2^5*z8z2z1z1+42587330003873/

2235340800*z2^5*z9z3+19746145461233683237/53480528640000*z2^5*

z5*z7+1287323935999686801847583/3066560142085440000*z2^5*z3*z9

+1323224553841/1571724000*z2^5*z3^4+196664555715971051/

22884301440000*z2^6*z7z3+68980006289813849323/

11355698914560000*z2^6*z5^2+94971440713063356192982873/

1046463648486656400000*z2^6*z3*z7+313619248788976309/

44951306400000*z2^7*z5z3+90987156455422307279/1064596773240000

*z2^7*z3*z5+21641573024873924687/3863315055600000*z2^8*z3^2-

288994255199496099205383627006427/16273221799745710800000000*

z2^11;



We have of course more results when we restrict the depth. They are less
interesting from the viewpoint of this talk.



Results

The results of all our runs have been put in a location which we call
the MZV datamine. It is more than 30 Gbytes of relations (after bzip2
compression) and it is located at

http://www.nikhef.nl/∼form/datamine/datamine.html

We will now show some of the results that we obtained from it.



The first things we look up in the datamine are some relations that
Broadhurst discovered in the 1990’s with the use of PSLQ. Now we can
obtain ’formal’ proof of them. They are so-called push down relations in
which an object that has at least depth D as a MZV, can be expressed
in terms of depth D − 2 Euler sums.
The simplest example of such a push down relation is the following:

H6,4,1,1 = −
2107648

15825
H−11,−1 +

50048

9495
H−9,−3 −

117568

237375
H−7,−5

+
64

243
H4

−3 +
69528448

427275
H−3H−9 +

696654848

4984875
H−5H−7

+
100352

1583
ζ2H−9,−1 −

3584

1583
ζ2H−7,−3 −

21236224

299187
ζ2H−7H−3

−
11690624

356175
ζ2H

2
−5 +

320

57
ζ2
2H−7,−1 −

64

171
ζ2
2H−5,−3

−
11072

1425
ζ2
2H−5H−3 −

32

35
ζ3
2H

2
−3 −

2535128220786914

481025690578125
ζ6
2



The next one at W = 15 becomes already rather bad.

H6,2,5,1,1 = −
28009182704961773376996398903118174942184754265798529122596

305651913521473711081726272715815595332022071566091290625
ζ6

2
H−3

−
6868723880789436171485501864576122208348106977850627944

38707190153725780323875000478239018538890298220085625
ζ5

2
H−5

−
352620899448359235956708050628782983678844745342656

1013638012410208225330902212029919741212540974465
ζ4

2
H−7

−
450346189502746275947949624113680029363879966160832

1079689612216387207432665263440390701792806802375
ζ3

2H−9

+
2176

945
ζ3

2H
3

−3 −
2037950288768

2234346324525
ζ2

2H
2

−3H−5 +
176193784832

29791284327
ζ2

2H−3H−7,−1

−
19599298746371297483193212289321032985913744503680

47252298322881887195876644470567687184344015351
ζ2

2H−11

−
172882684928

446869264905
ζ2

2H−3H−5,−3 −
25300992

8296097
ζ2

2H−9,−1,−1 +
74885120

174218037
ζ2

2H−7,−3,−1

+
18508800

58072679
ζ2

2
H−7,−1,−3 −

111818752

871090185
ζ2

2
H−5,−5,−1 −

224668672

7839811665
ζ2

2
H−5,−3,−3

−
22126906767952017266176

61221143448164910105
ζ2H

2

−3
H−7 −

30664508461328784676096

43729388177260650075
ζ2H−3H

2

−5

+
363293986249102299136

323921393905634445
ζ2H−3H−9,−1 −

4369910014768059392

107973797968544815
ζ2H−3H−7,−3



+
1644070289092638208

1841625107486235
ζ2H−5H−7,−1 −

336178378033637888

5524875322458705
ζ2H−5H−5,−3

+
853627469707858391615100678967489449812221696

59713260168768803663122898102388653887725
ζ2H−13

−
58973326655000576

40925002388583
ζ2H−11,−1,−1 +

11777430067486720

122775007165749
ζ2H−9,−3,−1

+
20405818414364672

613875035828745
ζ2H−9,−1,−3 −

8406294596950016

613875035828745
ζ2H−7,−5,−1

+
1152979070087168

368325021497247
ζ2H−7,−3,−3 +

12273867025183744

613875035828745
ζ2H−7,−1,−5

−
2873606698310656

1841625107486235
ζ2H−5,−5,−3 −

1792

3645
H5

−3

−
4256896288848871864427599757056

34508279292586490964865596165
H2

−3H−9

+
390750819618975077368265702232899584

712288099409986982475670367743425
H−3H−5H−7

−
1208984451017729087145407744

375907181836454149944069675
H−3H−7,−5

+
3840626217263581248362959360

135326585461123493979865083
H−3H−9,−3

−
409378446382355312335204364288

676632927305617469899325415
H−3H−11,−1

+
224360652920825136173473713980416

1142178828829754987399963173875
H3

−5



−
666137612783380413012285076480

1015270070070893322133300599
H−5H−9,−1

+
879380015176193352870400256

37602595187810863782714837
H−5H−7,−3

−
28443425005763926538743367680

85300643916253197627118749
H−7H−7,−1

+
5688685001152785307748673536

255901931748759592881356247
H−7H−5,−3

−
2112533459510815147752919876950784

157610576986463474066739074985
H−15

+
85294165615990794439499776

71262024992692729847217
H−13,−1,−1

−
17490794990045584642269184

213786074978078189541651
H−11,−3,−1 −

12585531935942832720038912

213786074978078189541651
H−11,−1,−3

+
4671827710001491787653120

213786074978078189541651
H−9,−5,−1 +

4872424480684713720215552

1924074674802703705874859
H−9,−3,−3

+
862712257577949234710528

71262024992692729847217
H−9,−1,−5 −

510117151499171079299072

71262024992692729847217
H−7,−7,−1

−
474464980999666928489984

1924074674802703705874859
H−7,−5,−3 −

247377046826432734064128

641358224934234568624953
H−7,−3,−5

It just gives some more respect for Broadhurst who located these relations
with the help of PSLQ in the 90’s.



Verifying push downs isn’t necessarily a trivial lookup in the tables. For
example there are two MZVs at weight 17 and depth 5. There should
be one push down. It is however a linear combination of the two that
obtains the push down as in

H6,4,5,1,1 +
72

5
H5,3,3,3,3 → (D ≤ 3)

We do not show here the right hand side as it involves 99 terms. Just
one term:
− 391637561921020510388495527693101233498239312730472192870557734150375516560722487938377037680200651787224018403770884822305866731511488

12096842033646879193852836812120840799898022503305835922565953025114624797521762549901601984894859006780341916995765114718351715625
ζ7

2
H
−3

This means that checks of the more complicated push downs require quite
an amount of algebra first to get the ’non-push downs’ out of the way.



Broadhurst and Kreimer gave a conjecture for the number of basis ele-
ments for each weight and depth for MZVs. They also gave a conjecture
for each weight and depth when the MZVs are expressed in terms of Eu-
ler sums. These conjectures are given on the next page. In red are the
numbers we explicitly verified.
From them one can see that there should be MZV basis elements that
have fewer indices when expressed in terms of Euler basis elements as we
have seen before. The push downs.
From the tables one can derive how many there should be, under the
assumption that a push down is only from D to D − 2.



W/D 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6 0
7 1
8 1
9 1 0
10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3
21 1 6 9 1
22 3 11 7
23 1 8 15 4
24 3 16 14 1
25 1 10 23 11
26 4 20 27 5
27 1 11 36 23 2
28 4 27 45 16
29 1 14 50 48 7
30 4 35 73 37 2

W/D 1 2 3 4 5 6 7 8 9 10
1
2 1
3 1
4
5 1
6
7 1
8 1
9 1
10 1
11 1 1
12 2
13 1 2
14 2 1
15 1 3
16 3 2
17 1 5 1
18 3 5
19 1 7 3
20 4 8 1
21 1 9 7
22 4 14 3
23 1 12 14 1
24 5 20 9
25 1 15 25 4
26 5 30 20 1
27 1 18 42 12
28 6 40 42 4
29 1 22 66 30 1
30 6 55 75 15



A push down basis

In determining a nice basis for the MZVs we noticed that the number of
elements for each weight followed a prescription. They were equal to the
number of elements one obtains when making all Lyndon words out of
odd integers ≥ 3 in which the integers add up to the weight. Let us call
this set LW . The number of elements of a given weight and given depth
in this construction follows exactly the second Broadhurst-Kreimer table!
Next we tried to write as many basis elements as possible in terms of
elements of this set.
This would not cover the whole set. The remaining elements could be
obtained by allowing two even integers (say the first two indices) and
making the last two indices equal to one. These elements would match
the missing elements of our set if one would take away the ones and add
them to the even integers. We call such a basis PW .



Example: W = 12.

L12 : H9,3 H7,5

P12 : H9,3 H6,4,1,1

Example: W = 18.

L18 : H15,3 H13,5 H11,7 H9,3,3,3 H7,5,3,3 H7,3,5,3 H7,3,3,5 H5,5,5,3

P18 : H15,3 H13,5 H10,6,1,1 H9,3,3,3 H7,5,3,3 H7,3,5,3 H6,2,3,5,1,1 H5,5,5,3

The interesting thing is that each of these special elements seems to be
connected to a push down relation.
This is why we needed the run for Euler sums at W = 18, D = 6.

H10,6,1,1+46630979 H5,5,5,3+122713096 H7,5,3,3+1002156999 H9,3,3,3

→ 672686306 H−17,−1+72010179 H−15,−3−705663559 H−13,−5

+817296192 H−11,−7 + · · ·



When we study the B-K tables and we study the outputs we have, we
have to come to the conclusion that starting at weight 27 there should
be a double pushdown.
i.e. We will have a basis element that needs 4 even indices and can be
written with 4 trailing ones as in H6,4,6,4,3,1,1,1,1 which would be expressed
in terms of H−7,−5,−7,−5,−3.
Unfortunately, the runs which would establish such a relation are ex-
tremely costly. Already the W = 27, D ≤ 9 MZV run that would estab-
lish that we need the element with the four trailing ones is estimated to
take of the order of one year. The corresponding run for the Euler sums
to obtain the explicit pushdown relation would be much worse.
A similar but more mixed double pushdown should take place for W =
28, D ≤ 8. This run seems ‘cheaper’. It may take less than 3 months.



Currently running (since Aug-03): weight=28, depth ≤ 8).
This would be the first instance of a ‘double pushdown’. Thus far (4-oct-
2009):

TotalGeneratedTerms = 26195653989649;

which is 2.6 1013. Statistics are like:

Time = 69738.22 sec Generated terms = 6768912520814

FF Terms in output = 2563910243

substitution(8-sh)-4544 Bytes used = 61564939480

The time is the time of the master. The 8 workers each contributed 2
weeks of CPU time in this step alone.



In total we managed to derive 16 explicit pushdown relations (up tp
W = 22) using FORM and/or PSLQ. In them we noticed something
interesting:
The part with the Euler sums could always be expressed as half of the
right hand side of a doubling relation, provided we selected the basis
correcty.
We introduce a new function A as

An1,n2,···,np−1,np =
∑
±

sH±n1,±n2,···,±np−1,np

in which the sum is over the 2p−1 possible sign combinations and s = −1
if the number of minus signs inside H is odd and s = +1 if this number
is even as in

A7,5,3 = H7,5,3 − H−7,5,3 − H7,−5,3 + H−7,−5,3



In terms of this function the pushdown relations we gave before become
now

H6,4,1,1 = −
64

27
A7,5 −

7967

1944
H9,3 +

11431

1296
H5H7 −

799

72
H3H9

+
1

12
H4

3 + 3ζ2H7,3 +
7

2
ζ2H

2
5 + 10ζ2H3H7

+
3

5
ζ2
2H5,3 −

1

5
ζ2
2H3H5 −

18

35
ζ3
2H

2
3 −

5607853

6081075
ζ6
2

H6,4,1,1 = −
2107648

15825
H−11,−1 +

50048

9495
H−9,−3 −

117568

237375
H−7,−5

+
64

243
H4

−3
+

69528448

427275
H−3H−9 +

696654848

4984875
H−5H−7

+
100352

1583
ζ2H−9,−1 −

3584

1583
ζ2H−7,−3 −

21236224

299187
ζ2H−7H−3

−
11690624

356175
ζ2H

2

−5 +
320

57
ζ2

2H−7,−1 −
64

171
ζ2

2H−5,−3

−
11072

1425
ζ2

2H−5H−3 −
32

35
ζ3

2H
2

−3 −
2535128220786914

481025690578125
ζ6

2



H6,4,3,1,1 = +
1408

81
A7,5,3 +

16663

11664
H9,3,3 +

150481

68040
H7,3,5 −

20651486329

4082400
H15

+
1903

120
H7H5,3 −

101437

38880
H5H7,3 −

1520827

38880
H3

5 + 10H3H6,4,1,1

+
162823

3888
H3H9,3 −

93619

1296
H3H5H7 +

3601

48
H2

3H9 −
17

20
H5

3

+
14

5
ζ2H5,5,3 − 2ζ2H7,3,3 +

31753363

12960
ζ2H13 −

21

2
ζ2H5H5,3

−27ζ2H3H7,3 −
61

2
ζ2H3H

2
5 − 84ζ2H

2
3H7 − 4ζ2

2H5,3,3

+
979621

1701
ζ2
2H11 − 5ζ2

2H3H5,3 +
9

2
ζ2
2H

2
3H5 −

490670609

3572100
ζ3
2H9

+
186

35
ζ3
2H

3
3 −

1455253

283500
ζ4
2H7 +

4049341

311850
ζ5
2H5 +

12073102

1488375
ζ6
2H3



What the above says is that we can find a good basis for the MZVs using
the set Lw, provided we borrow some elements from the Euler sums. In
such terms the basis for weight w = 18 would look like

L18 : Z15,3 Z13,5 Z11,7 Z9,3,3,3 Z7,5,3,3 Z7,3,5,3 Z7,3,3,5 Z5,5,5,3

P18 : Z15,3 Z13,5 A11,7 Z9,3,3,3 A7,5,3,3 Z7,3,5,3 Z7,3,3,5 Z5,5,5,3

This is as close as we managed to come to a decent basis.
It is not unique which Z elements should be replaced by an A although
the choice is much more restricted than for the first prescription (with
the trailing ones).
The role of the doubling relation(s) here is also not quite clear. We can
only study this for the weight 12 relations.



Conclusions

When calculating Feynman diagrams one runs into many interesting
mathematical problems. Using the tools that were developed for Field
Theory calculations we can often take the solutions way beyond what
has been done before.
We have some conjectures about a basis for that MZVs that simplifies
when they are embedded in the Euler sums. This may help the mathe-
maticians in an attempt to obtain some solid theorems.
We did not obtain the holy grail of this field: a constructive algorithm
that would express all MZVs or Euler sums in terms of a basis.
For now we will have to use table substitution when reducing MZVs and
Euler sums to a minimal set.


