Chris White, Durham University

Path Integral Methods for Soft Gluon Resummation

In collaboration with E. Laenen & G. Stavenga; arXiv:0811.2067

QCD: The Modern View of the Strong Interactions

Overview

What is the structure of soft gluon corrections at next-to-eikonal order?

- Review of soft gluon resummation.
- Exponentiation in (non-)abelian gauge theories webs.
- New approach using path integral methods.
- Classification of next-to-eikonal contributions.
- Outlook.

Soft resummation

- Multiple soft gauge boson emission can lead to large corrections to cross-sections.
- If ξ is the energy carried by soft bosons, typically get contributions:

$$\frac{d\sigma}{d\xi} = \sum_{n,m} \alpha^n \left[c_{nm}^0 \frac{\log^m(\xi)}{\xi} + c_{nm}^1 \log^m(\xi) + \dots \right]$$

- First set of terms corresponds to *eikonal approximation*, in which momenta k_i → 0 for all (soft) emissions.
- Second set of terms is *next-to-eikonal* (NE) limit i.e. first order in k_i.
- Happens in abelian and non-abelian theories.

Soft resummation - abelian case

- When ξ is small, perturbation theory breaks down must resum problem logarithms.
- At eikonal order, have a simple result for the amplitude in abelian theories

$$\mathcal{A} = \mathcal{A}_0 \exp\left[\sum G_c\right],$$

where A_0 is the Born amplitude, and G_c are connected subdiagrams.

• Gives eikonal logarithms at all orders in α .

Soft resummation - nonabelian case

Exponentation generalisable to non-abelian theories, but structure is more complicated:

$$\mathcal{A} = \mathcal{A}_0 \exp\left[\sum \bar{C}_W W\right],$$

where W are webs (two-eikonal line irreducible subdiagrams). • Webs have modified colour weights \bar{C}_W .

 More effort than abelian case, but still predicts eikonal logs to all orders. Generalisation to NE order

Question: Can this be extended to NE order?

- Will now introduce new framework for soft resummation.
- Old results are recovered, and can be easily generalised to sub-eikonal approximation.
- Based on key observation:

Exponentiation of connected subdiagrams looks like exponentiation of connected diagrams in QFT (a textbook result!).

- Are they by any chance related?
- Answer: yes, after rewriting of the problem.
- Let's first look at abelian case (with scalar emittors) in detail...

Path integral method

- Consider a Green's function with a number of hard external lines, each of which may emit soft radiation.
- Can write this as:

$$G(p_1,\ldots p_n)=\int \mathcal{D}A_s^{\mu}H(x_1,\ldots,x_n)S(p_1,x_1)\ldots S(p_n,x_n),$$

where *H* is hard interaction, and *S* are propagators for the emitting particles in the presence of a soft gauge field A_s^{μ} , sandwiched between states $|p_i\rangle$, $|x_i\rangle$.

Propagator factors S(p_i, x_i) can now be re-expressed as first-quantised path integrals...

Propagators as path integrals

Can write the scalar free particle propagator factor as

$$S(x,p) = \int \mathcal{D}x \mathcal{D}p \exp\left[-ip(T)x(T) + i\int_0^T dt(p\dot{x} - H(p,x))\right]$$

- This is a first-quantised path integral, where x(t) is the trajectory of the particle.
- For an emitting particle in a background soft gauge field, this becomes

$$S(p, x, A_{s}^{\mu}) = \int_{x(0)=0}^{p(T)=0} \mathcal{D}p\mathcal{D}x \exp \left[i \int_{0}^{T} dt(p\dot{x} - \frac{1}{2}p^{2} + (p_{f} + p) \cdot A_{s}(x_{i} + p_{f}t + x) + \frac{i}{2}\partial \cdot A_{s}(x_{i} + p_{f}t + x) - A_{s}^{2}(x_{i} + p_{f}t + x))\right].$$

Soft photon exponentiation

- One now substitutes the propagator factors into the expression for the Green's function.
- Can carry out the path integrals over p_i (for each hard external line).
- Result has the form

$$G(p_1, \dots p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots x_n) \prod_i \mathcal{D}x_i e^{-ip_i \cdot x_i}$$

exp $\left[i \int_0^\infty dt \left(\frac{1}{2} \dot{x}^2 + (p_f + \dot{x}) \cdot A(x_i + p_f t + x(t)) + \frac{i}{2} \partial \cdot A(x_i + p_f t + x) \right) \right].$

This is a quantum field theory for the soft gauge field! Terms in exponent act as sources for A^µ_s.

Soft photon exponentiation

- These sources are localised on the hard external lines.
- All possible soft photon diagrams are generated, which span the external lines.
- ▶ Field theory, so disconnected diagrams exponentiate.

 \Rightarrow Soft photon corrections exponentiate.

Path integral picture - summary

- Factorise Green's functions into hard interactions with outgoing (hard) legs emitting soft radiation.
- Rewrite propagators for these legs in terms of first quantised path integrals involving worldines x^μ_i.
- Get a field theory with source terms localised on the external lines.
- ► Exponentiation of disconnected diagrams in this field theory ≡ exponentiation of soft photon subdiagrams.
- Have considered scalar external lines, and abelian gauge fields, but framework generalises...

Generalisation

- Extension to fermion emitting particles is straightforward.
- Get extra terms in classical action, which have spinor structure (magnetic moment vertices).
- Can also consider non-abelian theories (see later).
- Clear physical interpretation allows extension of exponentiation beyond eikonal order.
- To understand this, let's look at the method in more detail...

Green's function with many soft emissions has the form

$$G(p_1, \dots p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots x_n) \prod_{x} \mathcal{D}x e^{-ip_i \cdot x}$$

exp $\left[i \int_0^{\infty} dt \left(\frac{1}{2} \dot{x}^2 + (p_f + \dot{x}) \cdot A(x_i + p_f t + x(t)) + \frac{i}{2} \partial \cdot A(x_i + p_f t + x) \right) \right].$

- Here {x} are the worldline trajectories of the hard emitting particles.
- The eikonal approximation corresponds to neglecting recoil i.e. x is the straight-line classical trajectory.
- ► Above result simplifies in this limit, in which one sets fluctuations to zero (x = x_i + p_ft, p = p_f).

One finds

$$G(p_1, \dots p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots x_n) \prod_x \mathcal{D}x e^{-ip_f \cdot x_i}$$
$$\exp\left[i \int_0^{\infty} dt p_f \cdot A(x_i + p_f t)\right]$$
$$= \int \mathcal{D}A_s^{\mu} H(x_1, \dots x_n) \prod_x \exp\left[\int dx \cdot A_s(x)\right].$$

- This is the well-known result that eikonal corrections can be treated via Wilson lines (Korchemsky, Marchesini).
- Momentum space Feynman rule for soft gauge field follows from Fourier transform

$$i\int_0^\infty dt p_f^\mu A_\mu(p_f t) = -\int rac{d^d k}{(2\pi)^d} rac{p_f^\mu ilde A_\mu(k)}{p_f\cdot k}.$$

- To go to next-to-eikonal order, one systematically expands about the classical trajectory.
- Outgoing momenta are lightlike, so one can set $p_f = \lambda n$, where $n^2 = 0$, for each external line.
- Then each external line factor in the Green's function becomes

$$\int \mathcal{D}x \exp\left[i \int_0^\infty dt \left(\frac{1}{2}\dot{x}^2 + (\lambda n + \dot{x}) \cdot A(\lambda n t + x)\right) + \frac{i}{2}\partial \cdot A(\lambda n t + x)\right]$$

 $\Rightarrow \lambda \to \infty$ gives the eikonal approximation.

Expanding to first subleading order in λ gives next-to-eikonal contribution.

• After rescaling $t \to t/\lambda$ get

$$\int \mathcal{D}x \exp\left[i \int_0^\infty dt \left(\frac{\lambda}{2} \dot{x}^2 + (n+\dot{x}) \cdot A(nt+x)\right) + \frac{i}{2\lambda} \partial \cdot A(nt+x)\right)\right]$$

for each external line.

- ▶ Putting this into the expression for the Green's function, the x path integrals can be done perturbatively, keeping all terms O(1/λ).
- The result is a set of new Feynman rules at NE level, which generalise the rules of eikonal perturbation theory...

NE Feynman Rules

One also finds two-gluon vertices...

NE Feynman Rules

Comments

- A given Feynman diagram will have at most one NE Feynman rule in it.
- Connected subdiagrams exponentiate using the same argument as in the eikonal case.
- This is not the whole story one also gets NE corrections from soft gauge bosons which land inside the hard interaction.

 These contributions are fixed by gauge invariance.

Internal emissions

Separation of the gauge field into hard and soft modes leaves a residual gauge invariance:

$$A^{\mu}_{h,s}(k)
ightarrow A^{\mu}_{h,s}(k) + k^{\mu}\xi_{h,s}(k).$$

 Gauge invariance of the Green's function leads (after some work) to the condition

$$H^{\mu}(p_1,\ldots,p_n;k) = -\sum_{j=1}^n q_j \frac{\partial}{\partial p_{j\mu}} H(p_1,\ldots,p_n),$$

where H^{μ} is the subamplitude for emission of a soft photon of momentum k^{μ} from within the hard interaction.

 This is essentially a rederivation of the well-known Low-Burnett-Kroll theorem.

Internal emissions

- The contributions from graphs with internal soft emissions are next-to-eikonal, due to the derivative in hard momentum.
- They do not formally exponentiate, but have an iterative structure to all orders in perturbation theory.
- Thus, the complete structure of matrix elements up to NE order is

$$\mathcal{M} = \mathcal{M}_0 \exp \left[\mathcal{M}^{\textit{E}} + \mathcal{M}^{\textit{NE}} \right] \times \left[1 + \mathcal{M}_{\textit{rem.}} \right] + \mathcal{O}(\textit{NNE}).$$

 External emission graphs contribute to the exponent, and internal graphs to the remainder.

Summary so far

- Have introduced path integral method for investigating soft gluon resummation.
- We have seen how it is applied to abelian theories.
- Get effective NE Feynman rules.
- Can classify which diagrams formally exponentiate at NE order and which do not.

What about non-abelian theories?

Non-abelian theories

- The exponentiation of soft photon corrections followed naturally from the path integral for the soft gauge field, after writing the external propagators as path integrals over x.
- This generated source terms for A_s localised on the hard external lines.
- The argument does not carry over straightforwardly to non-abelian theory, as the source terms are matrix-valued in colour space.
- Thus, they do not commute, and the usual combinatorics of the path integral do not apply.
- Can make progress using the *replica trick* of statistical physics.

The replica trick

- ► Consider a theory with *N* copies of the soft gauge bosons.
- ▶ Now consider the Green's function raised to the power *N*:

$$G^N = 1 + N \log G + \mathcal{O}(N^2)$$

- Crucially, only a subset of diagrams have a term linear in N.
- Then one has:

$$G = G_0 \exp\left[\sum C_i G_i\right],$$

where G_i are subgraphs linear in N, and C_i their corresponding colour factors.

Finally, one sets N = 1.

Comments

- We have considered the simplest case of a colour-singlet hard inteaction, with two external lines.
- ▶ In that case, one can find the subset of diagrams which a linear in the replica number *N*.
- ► This subset *W* have the property of being two-eikonal line irreducible.
- Furthermore they have modified colour factors C
 _W corresponding exactly the webs of GFT!
- A slightly more elegant solution for the colour factors results from the new technique.

Non-abelian exponentiation

- The extension to NE order proceeds similarly to in the abelian case.
- The structure of matrix elements (based on the simple hard interaction considered) has the same form:

$$\mathcal{M} = \mathcal{M}_0 \exp \left[\mathcal{M}^{\textit{E}} + \mathcal{M}^{\textit{NE}} \right] \times \left[1 + \mathcal{M}_{\textit{rem.}} \right] + \mathcal{O}(\textit{NNE}).$$

- The remainder comes from internal emission graphs.
- The exponent receives contributions from both eikonal and next-to-eikonal webs.

Applications

- It is known in many processes that NE logarithms are potentially sizeable.
- Prediction / resummation of these would be useful in any such process.
- Our technique potentially allows one to calculate these logarithms.
- Before phenomenological studies can take place, need to consider phase-space of emitted gluons.
- One expects:

$$\sigma^{\mathsf{NE}} = \int d\mathsf{P}\mathsf{S}^{\mathsf{E}} |\mathcal{M}^{\mathsf{NE}}|^2 + \int d\mathsf{P}\mathsf{S}^{\mathsf{NE}} |\mathcal{M}^{\mathsf{E}}|^2.$$

Conclusions

- Have developed a new framework for examining soft gluon resummation.
- Uses path integral methods to relate exponentiation to known exponentation of field theory diagrams.
- Works for all spins of emitting particles, and for (non)-abelian gauge theories.
- ▶ Old results are recovered (i.e. webs), with more elegant solution for \bar{C}_W .
- Extension to next-to-eikonal corrections straightforward.
- Structure of NE corrections in matrix elements classified.

Outlook

- Have so far looked at a simple non-abelian case (two external lines only). Can extend method to more complex systems.
- In cross-sections, need corrections to phase space as well as matrix elements. Under investigation.
- Phenomenological applications: What are the ln(1 x) terms in various circumstances?
- Can the new methods say anything about recent developments in N = 4 SYM?