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Overview

What is the structure of soft gluon corrections at next-to-eikonal
order?

◮ Review of soft gluon resummation.

◮ Exponentiation in (non-)abelian gauge theories - webs.

◮ New approach using path integral methods.

◮ Classification of next-to-eikonal contributions.

◮ Outlook.
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Soft resummation

◮ Multiple soft gauge boson emission can lead to large
corrections to cross-sections.

◮ If ξ is the energy carried by soft bosons, typically get
contributions:

dσ

dξ
=

∑

n,m

αn

[

c0
nm

logm(ξ)

ξ
+ c1

nm logm(ξ) + . . .

]

◮ First set of terms corresponds to eikonal approximation, in
which momenta ki → 0 for all (soft) emissions.

◮ Second set of terms is next-to-eikonal (NE) limit i.e. first
order in ki .

◮ Happens in abelian and non-abelian theories.
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Soft resummation - abelian case

◮ When ξ is small, perturbation theory breaks down - must
resum problem logarithms.

◮ At eikonal order, have a simple result for the amplitude in
abelian theories

A = A0 exp
[

∑

Gc

]

,

where A0 is the Born amplitude, and Gc are connected
subdiagrams.

◮ Gives eikonal logarithms at all orders in α.
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Soft resummation - nonabelian case

◮ Exponentation generalisable to non-abelian theories, but
structure is more complicated:

A = A0 exp
[

∑

C̄W W
]

,

where W are webs (two-eikonal line irreducible subdiagrams).
◮ Webs have modified colour weights C̄W .

◮ More effort than abelian case, but still predicts eikonal logs to
all orders.

5 / 29



Generalisation to NE order

Question: Can this be extended to NE order?

◮ Will now introduce new framework for soft resummation.

◮ Old results are recovered, and can be easily generalised to
sub-eikonal approximation.

◮ Based on key observation:

Exponentiation of connected subdiagrams looks like
exponentiation of connected diagrams in QFT (a textbook

result!).

◮ Are they by any chance related?

◮ Answer: yes, after rewriting of the problem.

◮ Let’s first look at abelian case (with scalar emittors) in detail...
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Path integral method

◮ Consider a Green’s function with a number of hard external
lines, each of which may emit soft radiation.

◮ Can write this as:

G (p1, . . . pn) =

∫

DAµ

s H(x1, . . . , xn)S(p1, x1) . . . S(pn, xn),

where H is hard interaction, and S are propagators for the
emitting particles in the presence of a soft gauge field Aµ

s ,
sandwiched between states |pi 〉, |xi〉.

H

S

S

S

◮ Propagator factors
S(pi , xi) can now be
re-expressed as
first-quantised path
integrals...
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Propagators as path integrals

◮ Can write the scalar free particle propagator factor as

S(x , p) =

∫

DxDp exp

[

−ip(T )x(T ) + i

∫ T

0
dt(pẋ − H(p, x))

]

.

◮ This is a first-quantised path integral, where x(t) is the
trajectory of the particle.

◮ For an emitting particle in a background soft gauge field, this
becomes

S(p, x ,Aµ

s ) =

∫ p(T )=0

x(0)=0
DpDx exp

[

i

∫ T

0
dt(pẋ −

1

2
p2

+ (pf + p) · As(xi + pf t + x) +
i

2
∂ · As(xi + pf t + x)

− A2
s (xi + pf t + x))

]

.
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Soft photon exponentiation

◮ One now substitutes the propagator factors into the
expression for the Green’s function.

◮ Can carry out the path integrals over pi (for each hard
external line).

◮ Result has the form

G (p1, . . . pn) =

∫

DAµ

s H(x1, . . . xn)
∏

i

Dxie
−ipi ·xi

exp

[

i

∫

∞

0
dt

(

1

2
ẋ2 + (pf + ẋ) · A(xi + pf t + x(t))

+
i

2
∂ · A(xi + pf t + x)

)]

.

◮ This is a quantum field theory for the soft gauge field! Terms
in exponent act as sources for Aµ

s .
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Soft photon exponentiation

◮ These sources are localised on the hard external lines.

◮ All possible soft photon diagrams are generated, which span
the external lines.

◮ Field theory, so disconnected diagrams exponentiate.

⇒ Soft photon corrections exponentiate.
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Path integral picture - summary

◮ Factorise Green’s functions into hard interactions with
outgoing (hard) legs emitting soft radiation.

◮ Rewrite propagators for these legs in terms of first quantised
path integrals involving worldines xµ

i .

◮ Get a field theory with source terms localised on the external
lines.

◮ Exponentiation of disconnected diagrams in this field theory ≡
exponentiation of soft photon subdiagrams.

◮ Have considered scalar external lines, and abelian gauge fields,
but framework generalises...
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Generalisation

◮ Extension to fermion emitting particles is straightforward.

◮ Get extra terms in classical action, which have spinor
structure (magnetic moment vertices).

◮ Can also consider non-abelian theories (see later).

◮ Clear physical interpretation allows extension of
exponentiation beyond eikonal order.

◮ To understand this, let’s look at the method in more detail...
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◮ Green’s function with many soft emissions has the form

G (p1, . . . pn) =

∫

DAµ

s H(x1, . . . xn)
∏

x

Dxe−ipi ·x

exp

[

i

∫

∞

0
dt

(

1

2
ẋ2 + (pf + ẋ) · A(xi + pf t + x(t))

+
i

2
∂ · A(xi + pf t + x)

)]

.

◮ Here {x} are the worldline trajectories of the hard emitting
particles.

◮ The eikonal approximation corresponds to neglecting recoil i.e.
x is the straight-line classical trajectory.

◮ Above result simplifies in this limit, in which one sets
fluctuations to zero (x = xi + pf t, p = pf ).
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◮ One finds

G (p1, . . . pn) =

∫

DAµ

s H(x1, . . . xn)
∏

x

Dxe−ipf ·xi

exp

[

i

∫

∞

0
dtpf · A(xi + pf t)

]

=

∫

DAµ

s H(x1, . . . xn)
∏

x

exp

[
∫

dx · As(x)

]

.

◮ This is the well-known result that eikonal corrections can be
treated via Wilson lines (Korchemsky, Marchesini).

◮ Momentum space Feynman rule for soft gauge field follows
from Fourier transform

i

∫

∞

0
dtpµ

f Aµ(pf t) = −

∫

ddk

(2π)d
pµ

f Ãµ(k)

pf · k
.
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◮ To go to next-to-eikonal order, one systematically expands
about the classical trajectory.

◮ Outgoing momenta are lightlike, so one can set pf = λn,
where n2 = 0, for each external line.

◮ Then each external line factor in the Green’s function becomes
∫

Dx exp

[

i

∫

∞

0
dt

(

1

2
ẋ2 + (λn + ẋ) · A(λnt + x)

+
i

2
∂ · A(λnt + x)

)]

⇒ λ → ∞ gives the eikonal approximation.

◮ Expanding to first subleading order in λ gives next-to-eikonal
contribution.
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◮ After rescaling t → t/λ get

∫

Dx exp

[

i

∫

∞

0
dt

(

λ

2
ẋ2 + (n + ẋ) · A(nt + x)

+
i

2λ
∂ · A(nt + x)

)]

for each external line.

◮ Putting this into the expression for the Green’s function, the x
path integrals can be done perturbatively, keeping all terms
O(1/λ).

◮ The result is a set of new Feynman rules at NE level, which
generalise the rules of eikonal perturbation theory...
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NE Feynman Rules

p

k

pµ

p · k
,

p

k

kµ

2p · k
,

p

k

− k2 pµ

2(p · k)2
.

◮ One also finds two-gluon vertices...
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NE Feynman Rules

p

lk

+
ηµν

p · (k + l)
,

p

lk

−
lµpνp · k + kνpµp · l

p · (k + l)p · kp · l
,

p

lk

+
pµpνk · l

p · (k + l)p · kp · l
.
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Comments

◮ A given Feynman diagram will have at most one NE Feynman
rule in it.

◮ Connected subdiagrams exponentiate using the same
argument as in the eikonal case.

◮ This is not the whole story - one also gets NE corrections
from soft gauge bosons which land inside the hard interaction.

H

S

S

S

◮ These contributions are
fixed by gauge invariance.
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Internal emissions

◮ Separation of the gauge field into hard and soft modes leaves
a residual gauge invariance:

Aµ

h,s(k) → Aµ

h,s(k) + kµξh,s(k).

◮ Gauge invariance of the Green’s function leads (after some
work) to the condition

Hµ(p1, . . . , pn; k) = −
n

∑

j=1

qj
∂

∂pjµ

H(p1, . . . , pn),

where Hµ is the subamplitude for emission of a soft photon of
momentum kµ from within the hard interaction.

◮ This is essentially a rederivation of the well-known
Low-Burnett-Kroll theorem.
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Internal emissions

◮ The contributions from graphs with internal soft emissions are
next-to-eikonal, due to the derivative in hard momentum.

◮ They do not formally exponentiate, but have an iterative
structure to all orders in perturbation theory.

◮ Thus, the complete structure of matrix elements up to NE
order is

M = M0 exp
[

ME + MNE
]

×
[

1 + Mrem.

]

+ O(NNE ).

◮ External emission graphs contribute to the exponent, and
internal graphs to the remainder.
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Summary so far

◮ Have introduced path integral method for investigating soft
gluon resummation.

◮ We have seen how it is applied to abelian theories.

◮ Get effective NE Feynman rules.

◮ Can classify which diagrams formally exponentiate at NE
order and which do not.

What about non-abelian theories?
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Non-abelian theories

◮ The exponentiation of soft photon corrections followed
naturally from the path integral for the soft gauge field, after
writing the external propagators as path integrals over x .

◮ This generated source terms for As localised on the hard
external lines.

◮ The argument does not carry over straightforwardly to
non-abelian theory, as the source terms are matrix-valued in
colour space.

◮ Thus, they do not commute, and the usual combinatorics of
the path integral do not apply.

◮ Can make progress using the replica trick of statistical physics.
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The replica trick

◮ Consider a theory with N copies of the soft gauge bosons.

◮ Now consider the Green’s function raised to the power N:

GN = 1 + N log G + O(N2)

◮ Crucially, only a subset of diagrams have a term linear in N.

◮ Then one has:
G = G0 exp

[

∑

CiGi

]

,

where Gi are subgraphs linear in N, and Ci their
corresponding colour factors.

◮ Finally, one sets N = 1.
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Comments

◮ We have considered the simplest case of a colour-singlet hard
inteaction, with two external lines.

◮ In that case, one can find the subset of diagrams which a
linear in the replica number N.

◮ This subset W have the property of being two-eikonal line
irreducible.

◮ Furthermore they have modified colour factors C̄W

corresponding exactly the webs of GFT!

◮ A slightly more elegant solution for the colour factors results
from the new technique.
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Non-abelian exponentiation

◮ The extension to NE order proceeds similarly to in the abelian
case.

◮ The structure of matrix elements (based on the simple hard
interaction considered) has the same form:

M = M0 exp
[

ME + MNE
]

×
[

1 + Mrem.

]

+ O(NNE ).

◮ The remainder comes from internal emission graphs.

◮ The exponent receives contributions from both eikonal and
next-to-eikonal webs.
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Applications

◮ It is known in many processes that NE logarithms are
potentially sizeable.

◮ Prediction / resummation of these would be useful in any
such process.

◮ Our technique potentially allows one to calculate these
logarithms.

◮ Before phenomenological studies can take place, need to
consider phase-space of emitted gluons.

◮ One expects:

σNE =

∫

dPSE|MNE|2 +

∫

dPSNE|ME|2.
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Conclusions

◮ Have developed a new framework for examining soft gluon
resummation.

◮ Uses path integral methods to relate exponentiation to known
exponentation of field theory diagrams.

◮ Works for all spins of emitting particles, and for (non)-abelian
gauge theories.

◮ Old results are recovered (i.e. webs), with more elegant
solution for C̄W .

◮ Extension to next-to-eikonal corrections straightforward.

◮ Structure of NE corrections in matrix elements classified.
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Outlook

◮ Have so far looked at a simple non-abelian case (two external
lines only). Can extend method to more complex systems.

◮ In cross-sections, need corrections to phase space as well as
matrix elements. Under investigation.

◮ Phenomenological applications: What are the ln(1 − x) terms
in various circumstances?

◮ Can the new methods say anything about recent
developments in N = 4 SYM?
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