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Polylogarithms

This talk is an overview of the ongoing problem of special functions in
perturbative QCD and their numerical properties.

1 Background to work

2 Review the basic definitions and properties

3 ‘Goncharov’s conjecture’ (excluding the symbol)

4 Numerical evaluation

5 PSLQ and transcendentals

(My talks were based around computer algebra approaches to problems.)
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Heavy Flavour Wilson Coefficients
Our work concerns summation problems found from 3-loop parton
distribution functions (PDFs). Recall the DIS experiment,

lµ

Pµ

qµ

l ′µ

Lµν (QED)

W µν

DIS diagram Factorisation

l ′0
dσ
d3l ′

= 1
4l ·P

α2

q2
LµνW

µν

Cross-section

W µν =
1

2x

(
gµν − qµqν

q2

)
FL(x ,Q2)

+
2x

Q2

(
PµPν +

qµPν + qνPµ

2x
− Q2

4m2
gµν
)
F2(x ,Q2)
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Heavy Flavour Wilson Coefficients

The structure functions are written in terms of the (unknown) PDF, fj ,
and a perturbative piece; the Wilson coefficients Ci ,j ,

Fi (x) =
∑
j

∫
dz

z
Ci ,j

(x
z

)
fj(z),

i ∈ {2, L} and j runs over all (anti-)quarks and the gluon. There is a well
established literature where light flavour contributions are known to
3-loops, heavy contributions to 2-loops.
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1-loop Many contributors; Witten ’76, Babcock & Sivers ’78, Shifman, Vainshtein & Zakharov

’78, Leveille & Weiler ’79, Glück & Reya ’79, Glück, Hoffmann & Reya ’82.

2-loop First by Laenen, van Neerven, Riemersma & Smith ’93

Using integration by parts and Q2 � m2; Buza, Matiounine, Smith, Migneron &

van Neerven ’96. Using pFq’s and to order αsε Bierenbaum, Blümlein, Klein &

Schneider ’08, Bierenbaum, Blümlein & Klein ’09

3-loop For Q2 � m2 fixed moments N = 2..10+
ANS
qq,Q , ATR

qq,Q , APS
qq,Q Ablinger et al. ’14

Aqg ,Q manuscript in preparation Ablinger et al. ’14

Agg ,Q proportional to nf T
2
FCA/F Ablinger et al. ’14

+ . . .

Here Ai ,j appears which is the heavy flavour contribution.
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Heavy Flavour Wilson Coefficients

The Wilson coefficients may be written out as a sum of light and heavy
contributions,

Cj ,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
= Cj ,(2,L)

(
N,

Q2

µ2

)
+ Hj ,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
and if Q2 � m2 one my factorise the heavy part in terms of the light
part Buza, Matiounine, Smith, van Neerven

Hj ,(2,L)

(
N,

Q2

µ2
,
m2

µ2

)
=
∑
i

Ci ,(2,L)

(
N,

Q2

µ2

)
Aij

(
m2

µ2
,N

)
We have been computing the heavy flavour 3-loop contributions at large
ξ = Q2

m2
c
.
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Heavy Flavour Wilson Coefficients

Recall that the PDF is introduced as a Mellin convolution,

Fi (x) =
∑
j

∫
dz

z
Ci ,j

(x
z

)
fj(z) =

∑
j

Ci ,j ∗ fj .

Thus by taking the Mellin transform,

M[g ](N) =

∫ 1

0
dxxN−1g(x) N ∈ Z+

things simplify greatly. In Mellin space Feynman diagrams contributing to
the Wilson coefficients Ci ,j become rational in the Mellin parameter N and
definite sums involving N. For experiment, the inverse transform of results
must be computed. (Less relevant today but key to our wider project.)
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Polylogarithms

All of this is to motivate the main topic of the talk; polylogarithms.

Having computed the Wilson coefficients one needs an efficient
evaluation to perform fits and extract PDFs.

The problem is general; higher-loop calculations lead to
polylogarithms that need to be evaluated.

Therefore one should study the functions in their own right to
understand cross-sections better and to be able to evaluate them.
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Polylogarithms
Parameter integrals

To compute the Wilson coefficients one must compute Feynman diagrams
(with the additional feature of an operator insertion). The standard
practice is to introduce Feynman parameters,

1

A1 · · ·Am
= Γ(m)

∫ 1

0
dx1 · · · dxm

δ(x1 + · · ·+ xm − 1)

(x1A1 + · · · xmAm)m

One may apply the δ-function which introduces a step function Θ,

x1 = 1− x2 − · · · − xm ∈ (0, 1),∫ 1

0
dx2 · · · dxm

Θ(1− x2 − · · · − xm)

([1− x2 − · · · − xm]A1 + · · · xmAm)m
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Polylogarithms
Letters

This can be re-arranged via some changes of variables into a sum of
nested integrals,∫ 1

0
dt1f (t1)

∫ t1

0
f (t2)dt2 · · ·

∫ tn−1

0
dtnf (tn).

What is not clear is how to choose the fi . Essentially the most basic
objects of interest are,

1

x − ai
.

The ai are referred to as letters and intuitively represent dimensionless
combinations of scales arising in the problem. Iterated integrals over
letters fi are known as polylogarithms with various prefixes.
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Polylogarithms
Example

This certainly does not cover all possible Feynman diagrams — there are
parameter integrals that can not be cast in terms of nested integrals over
fi . However one can obtain a lot of diagrams this way and these objects
are already very general. While elementary this is sufficiently important to
warrant an example. Consider,

1

ABC
=

∫ 1

0
dxi

δ(1− x1 − x2 − x3)

[x1A + x2B + x3C ]3
,

=

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[x1A + x2B + (1− x1 − x2)C ]3
,

= −
∫ 1

0
dx1

∫ x1

0
dx2

1

[x1A + x2B + (x2 − x1)C ]3
,

+

∫ 1

0
dx1

∫ 1

0
dx2

1

[x1A + x2B + (x2 − x1)C ]3
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Polylogarithms
Example

Next one would like to perform these integrals. Some parameter
integrals will be recognizable in terms of elementary functions and
known special functions like Gauß’s hypergeometric function. What
remains are new iterated integrals that occur in field theory.

After momentum integration the A, B and C will give scales that
appear as parameters in these special functions.

From this angle a Feynman diagram can be viewed as the problem of
expressing the input in terms of known special functions and various
iterated integrals. Simplifying, understanding and evaluating those
iterated integrals is the topic of this talk.
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Polylogarithms
Literature

The ‘earliest’ occurrence of a polylogarithm both in mathematics and
particle physics is usually the dilogarithm,

Li2(x) = −
∫ x

0
dt

log(1− t)

t
= −

∫ x

0

dt1
t1

∫ t1

0

dt2
t2 − 1

.

the first integral is for z ∈ C the second for |z | < 1. Notice that one might
be tempted to define the dilogarithm as,∫ x

0

dt1
t1

∫ t1

0

dt2
1− t2

.

Much is known about the dilogarithm. Below are just 2 example relations,

Li2(1) = ζ(2), Li2(z) + Li2(−z) =
1

2
Li2(z2).
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Polylogarithms
Harmonic polylogarithms

Vermaseren and Remiddi defined the harmonic polylogarithms (HPLs),

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

x + 1
,

which violates the convention choice made earlier. With these the
harmonic polylogarithms are now defined,

H(~a; x) :=

∫ x

0
dtfa1(t)H(~ai>1; t), H(∅; x) = 1, H(~0; x) =

1

w !
logw x .

The length of ~a =: w is the weight of the polylogarithm. For example,

H(0, 1; x) =

∫ x

0
dt

H(1; t)

t
=

∫ x

0
dt

1

t1

∫ t1

0
dt2

1

1− t2
= Li2(x).

Not all HPLs exist such as H(1; 1) = log 0.
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Algebraic Relations
Properties

Harmonic polylogarithms enjoy several properties. The shuffle product
A� B is the order preserving interlacing of two sets,

{a, b}� {c} = {{a, b, c}, {a, c , b}, {c , a, b}}

then the harmonic polylogarithms satisfy,

H(~a; x)H(~b; x) =
∑

~c∈~a�~b

H(~c ; x),

which are referred to as shuffle identities. Which is much clearer with an
example,

H(0, 1; x)H(1; x) = H(0, 1, 1; x) + H(0, 1, 1; x) + H(1, 0, 1; x),

= 2H(0, 1, 1; x) + H(1, 0, 1; x).
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Algebraic Relations
Properties

A second class of identities can be derived from integration by parts. One
obtains the following general formula,

H(~a; x) = H(a1; x)H(~ai>1; x)−
∫ x

0
dtfa2(t)H(a1; t)H(~ai>2; t),

= H(a1; x)H(~ai>1; x)− H(a2, a1; x)H(~ai>2; x) + · · ·
+ (−1)w+1H(aw , . . . a1; x).

Again a simple example is,

H(1, 1; x) = H(1; x)H(1; x)− H(1, 1; x),

⇒ H(1, 1; x) =
1

2
H(1; x)2.
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Algebraic Relations
Basis

Having such relations the natural task is to eliminate all algebraic relations
and form a basis. (An algebraic relation is one involving positive integer
powers of harmonic polylogarithms all evaluated at x and real
coefficients.) There are 32 = 9 weight 2 HPLs 3×2

2 shuffle relations and 3
IBP relations so a weight 2 basis is,

H(0, 1; x), H(−1, 1; x), H(−1, 0; x).

Some of the relations for the other weight 2 HPLs are,

H(1,−1; x) = H(−1; x)H(1; x)− H(−1, 1; x),

H(0, 0; x) =
1

2
H(0; x)2.

For a review see for example the lecture notes by Ablinger & Blümlein ’13 and
references therein and for calculations Ablinger’s HarmonicSums package.
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Generalisations
Goncharov polylogarithm

More complicated Feynman diagrams lead one to observing complex
letters which suggests to define the Goncharov polylogarithm,

G (~a; x) :=

∫ x

0

dt

t − a1
G (~ai>1; t), G (∅; x) = 1, G (~a; 0) = 0,

for ai ∈ C. (Depending on x ∈ C it may be that there is a pole on the
contour of integration this can be resolved but I will not discuss the topic.)
Beyond the shuffle and integration by parts identities the Goncharov
polylogarithm also has a scaling property,

G (~a; x) = G (α~a;αx),

for α ∈ C. (Beware trailing zeros!) Note however that there are minus
signs when comparing an HPL to a Goncharov polylogarithm due to
differing conventions,

G (0, 1; x) = −H(0, 1; x).
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Generalisations
Hölder convolution

Goncharov polylogarithms also obey the Hölder convolution Borwein ’01,

G (~a; 1) =
w∑
j=0

(−1)jG (1− aj , 1− aj−1, . . . , 1− a1; 1− p)G (aj+1, . . . , aw ; p)

for p ∈ C arbitrary and a1 6= 1 and aw 6= 0. Again an example cuts
through the notation,

G (a, b; 1) = G (∅; 1− p)G (a, b; p)− G (1− a; 1− p)G (b; p)

+ G (1− b, 1− a; 1− p)G (∅; p) .

Relations of this type, depending on p are analytic; the argument changes
and therefore are independent of how the basis was set-up. Thus one
concludes that Goncharov polylogarithms satisfy (potentially) far more
relations than the harmonic polylogarithm subset.
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Generalisations
Multiple polylogarithms

There is yet another object of interest, the multiple polylogarithm, which
is equivalent to the Goncharov polylogarithm but highlights some
properties better.

Li~m(~x) = (−1)wG

(
~0m1−1,

1

x1
,~0m2−1,

1

x1x2
, . . . ,~0mw−1,

1∏w
i=1 xi

; 1

)
and now w is the length of x or equivalently ~m. Setting all arguments
equal to one, ~x = ~1, gives the so-called multiple-ζ values,

Li~m(~1) = ζ~m.

In one dimension, ~m ∈ N, this further reduces to the usual Riemann
ζ-function at natural arguments.
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Generalisations
Stuffle relations

Multiple polylogarithms obey a stuffle relation which is quite involved to
understand and I will omit. In short, rather than using a shuffle product to
combine to lists of indices one uses a stuffle product. The relation is of the
form,

Li~m(~x)Li~n(~y) =
∑
i

Li~ri (~si ),

the ~ri and ~si come out of the stuffle product. An example for a little more
clarity,

Lim(x)Lin(y) = Lim,n(x , y) + Lin,m(y , x) + Lim+n(xy)

One can of course translate this into the Goncharov notation. Stuffle
relations are in addition to shuffle relations — not every GPL is an MPL!
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Goncharov Conjecture
Basis redux

For a set of Goncharov polylogarithms there is the previous basis
calculation where shuffle and integration by parts relations are removed.
However, there are also the stuffle relations and the Hölder convolution
plus the potential for unknown relations. This leads us into Goncharov’s
conjecture.

Conjecture

Any multiple polylogarithm beyond weight 1 may be expressed in terms of
multiple polylogarithms without an index equal to 1.

This conjecture allows one to write down a handful of required functions.
For example at weight 5 the conjecture implies only,

Li5(x), Li3,2(x , y), Li4(x), Li2,2(x , y), Li2(x), log(x).

are needed. While Li1,2(x , y) is not needed for example.
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Goncharov Conjecture
Computation

Let us perform this computation at weight 4 using the Mathematica
package HarmonicSums. The start point is all possible weight 4
Goncharov polylogarithms; essentially one needs all possible ways of
writing 4 different indices, 3 different indices, 2 different and finally a
single index. After removing all shuffle and integration by parts relations
there are 15 such polylogarithms which include,

G (a, b, c , d ; 1), G (a, a, b, b; 1), G (a, b, b, b; 1).

Now it is possible to use two Hölder convolutions to ‘insert a zero’ into
any polylogarithm without a zero index Frellesvig ’16.
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Goncharov Conjecture
Computation

Let us tackle a specific weight 2 example however the method is general.
Given G (a, b; x) a, b 6= 0 normalise the last index to 1,

G (a, b; x) = G
(a
b
, 1;

x

b

)
.

Compute a related Hölder convolution with p = x
b ,

G
(a
b
, 1; 1

)
= −G

(
1;

x

b

)
G
(

1− a

b
, 1− x

b

)
+ G

(
0, 1− a

b
, 1− x

b

)
+ G

(a
b
, 1;

x

b

)
Re-arranged for G

(
a
b , 1; x

b

)
there is still a w = 2 polylogarithm without a

zero index. Compute a second Hölder convolution now with p = 0,

G
(a
b
, 1; 1

)
= G

(
1− a

b
; 1
)

+ G
(

0, 1− a

b
; 1
)
.
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Goncharov Conjecture
Computation

Combining the two Hölder convolution results allows one to write out that,

G (a, b; x) = G
(

1− a

b
; 1
)

+ G
(

0, 1− a

b
; 1
)

+ G
(

1;
x

b

)
G
(

1− a

b
, 1− x

b

)
− G

(
0, 1− a

b
, 1− x

b

)
.

Everything on the right-hand side is of lower weight or contains a zero.
This procedure of computing two suitable Hölder convolutions in exact
analogy to here always allows one to insert a zero into a non-zero index
vector. Performing this to the weight 4 list of Goncharov polylogarithms
and tidying up gets one down to the following list,

G (0, a, b, c ; 1), G (0, 0, a, b; 1), G (0, 0, 0, a; 1), G (0, a, 0, b; 1).
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Goncharov Conjecture
Computation

Translating to the multiple polylogarithm notation the list contains,

Li2,1,1, Li3,1, Li4, Li2,2.

Now that we are in the multiple polylogarithm language one can apply the
stuffle relations. Compute that,

Li3(x)Li1(y) = Li4(xy) + Li1,3(y , x) + Li3,1(x , y).

Now compute two shuffle relations,

Li1(x)Li3(xy) = Li1,3(y , x) + Li2,2(y , x) + Li3,1(y , x) + Li3,1(xy ,
1

x
),

Li2(y)Li2(xy) = Li2,2(y , x) + Li2,2(xy ,
1

x
) + 2Li3,1(y , x) + 2Li3,1(xy ,

1

x
).
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Goncharov Conjecture
Computation

One can solve these 3 relations to eliminate Li3,1 in favour of Li4 and Li2,2
reducing us to the set,

Li2,1,1, Li4, Li2,2.

Li2,1,1 or equivalently G (0, a, b, c ; 1) remains. I will not remove it because
it is a problem outside computer algebra; there is no known algorithm to
return an expression in terms of appropriate multiple polylogarithms. The
result is known though Frellesvig ’16.
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Goncharov Conjecture
Computation

More generally this represents the current situation with regards to
Goncharov’s conjecture. It is possible, with existing algorithms to,

return a small number of integrals that must be computed using
analysis techniques or using some under appreciated combinations of
known results.

Explicitly verify the conjecture up to weight 4.

Further relations, that help the conjecture may be found with
numerics or intuition.

Using ideas of this type there is a library, CHAPLIN, which can evaluate
harmonic polylogarithms in the complex plane Buehler & Duhr ’11.
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Numerics
Series

Having calculated Feynman diagrams and settled on a representation in
terms of special functions the next issue is how to evaluate such
expressions.

A simple approach would be direct numerical integration however a
better method is to find a rapidly converging series representation.

For x ∈ (0, 1) one may repeatedly apply a Maclaurin expansion to expand
letters,

1

x − a
= −

∞∑
r=0

x r

ar+1
,

then integrate term by term to derive a sum for the whole polylogarithm.
(Polylogarithms whose trailing index is zero do no directly admit such an
expansion because of the log(x) which can not be expanded so one must
extract this piece by shuffle products.)
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Numerics
Series

Such a series will converge provided ∀i |x | < |ai |. For HPLs the indices are
{1, 0,−1} so provided |x | � 1 the series is useful. For larger arguments
one can use a variable transformation. In particular if,

x =
1− t

1 + t
⇒ x ∈ (

√
2− 1, 1)⇔ t ∈ (0,

√
2− 1).

Additionally by writing out an HPL,

H

(
~a;

1− t

1 + t

)
=

∫ 1−t
1+t

0
dτ fa1(τ)H(~ai>1; τ),

then making successive variable transformations one can express the input
in terms of HPLs at t. For example,

H

(
1;

1− t

1 + t

)
= −H(−1; 1) + H(−1; t)− H(0; t)

Everything on the left is at small argument so can be evaluated by a series
representation.
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Numerics
Bernoulli speed-up

For HPLs of arbitrary weight the above method suffices; series expansion
for small argument then variable transformations to map from elsewhere
on the complex plane to small argument HPLs.

There is an additional speed-up option, the Bernoulli expansion, that
helps with efficiency.

At the innermost integral of any polylogarithm is a logarithm. The
series expansion derived always contains an expansion of that
logarithm.

Better then is to write the expansion out in terms of logarithmic
quantities.
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Numerics
Bernoulli speed-up

Recall the dilogarithm definition,

Li2(x) = −
∫ x

0
dt

log(1− t)

t
=

∫ − log(1−x)

0
du

u

eu − 1
,

=
∞∑
i=0

Bi

(i + 1)!
(− log(1− x))i+1.

This new expansion, using the Bernoulli numbers Bi , has much improved
convergence because ‘the logarithm is not expanded’.
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Numerics
Bernoulli speed-up

This leads to whether one can apply the Bernoulli speed-up to HPLs? The
answer is yes but there is a significant complication from the branch cut
structure. Consider H(−1, 1; x) which contains branch cuts corresponding
to both logarithms log(1− x) and log(1 + x). To obtain a good series
expansion one must separate out the polylogarithm into the two branch
pieces,

H(−1, 1; x) =

∫ x

0
dt

H(1; t)− H(1;−1)

t + 1
+

∫ x

0
dt

H(1;−1)

t + 1

Separating the branch cut structure leads to a better behaved, and so
faster, expansion.
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Numerics
Bernoulli speed-up

One may recursively compute a separation of the HPL into two pieces with
better analytic structure which can then be expanded using an appropriate
logarithm. Avoiding a full discussion of this technicality one can
write Vollinga ’04,

H(~a; x) =
∞∑
i=0

C~a(i)

(i + 1)!
(− log(1− x))i+1

where the C is quite a lot of work to compute,

C1,~a(i) =

{
0 i = 0

C~a(i − 1), i > 0
, Ca1+1,~a(i) =

i∑
j=0

(
i

j

)
Bi−j
j + 1

Ca1,~a(j).
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Numerics
Bernoulli speed-up

Then for a single index one uses,

C1(i) = δ0,i , Cn+1(i) =
i∑

j=0

(
i

j

)
Bi−j
j + 1

Cn(j).

There is another treatment in Gehrmann ’01 where one considers the analytic
structure of the HPLs and proceeds accordingly but it would be a technical
summary of known ideas so the formulae are better here.
For a choice of basis up to weight 8 a FORTRAN library of the HPLs on
(0, 1) is available Blümlein & MR.
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Numerics
Goncharov Polylogarithm

Numerical evaluation of the Goncharov polylogarithm is significantly
harder. Recall series convergence is poor when the argument is close to an
index. With arbitrary complex indices allowed in general one can not
always arrange to write a polylogarithm in a series that converges quickly.
For example a variable transformation will generate new letters,

G

(
2;

1− t

1 + t

)
= G (−1; t)− G

(
−1

3
; t

)
− G (0; 1) + G (0; 2).

The presence of −1
3 means variable transformations are not a general

solution. Alternatively, one could return to the symbol and Goncharov’s
conjecture. Up to weight 4 it is possible to write out all Goncharov
polylogarithms in terms of just a handful of functions of which only Li2,2 is
not a well-known function. For an implementation see Frellesvig ’16.
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Numerics
GiNaC Recipe

In GiNaC there is another approach which can be slower but completely
general Vollinga & Weinzierl ’04.

Recall our task is to write a given Goncharov polylogarithm in terms
of polylogarithms with indices larger than the argument in magnitude.

A sequence of variable transformations and integration by parts
identities applied allows to write a series representation that
converges.

A convergent series representation is delivered — it may converge slowly.
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Numerics
GiNaC Recipe

A good implementation for experimental numerics would be a tabulation
to fixed precision. If the series has no good convergence properties one can
not be sure of how many terms to tabulate. The dangerous scenario is an
index arbitrarily close to the argument,

ai ' x .
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Numerics
GiNaC Recipe

To speed-up convergence one can use the Hölder convolution. Recall
G (~a; x) converges poorly if there exists ai ' x with |x | < |ai |. Normalise
the polylogarithm of interest to have argument one then use the Hölder
convolution with p = 1

n to write,

G (~b; 1) =
w∑
j=0

(−1)jG (1− bj , 1− bj−1, . . . , 1− b1;
1

n
)G (bj+1, . . . , bw ;

1

n
),

=
w∑
j=0

(−1)jG (n − nbj , n − nbj−1, . . . , n − nb1; 1)

× G (nbj+1, . . . , nbw ; 1)

with ~b = ~a/x . By assumption this converges so,

|bj | > 1.
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Numerics
GiNaC Recipe

After applying the Hölder convolution the convergence would be better if,

|nbj | > |bj | > 1⇒ n > 1, |n(1− bj)| = |n||1− bj | > |1− bj | > 0#.

Thus one can not ensure that the polylogarithms in the Hölder convolution
will converge. One must repeat the algorithm of transformations to
express a polylogarithm in terms of convergent objects. Those objects that
do converge, which includes the j = 0 term,

G (nb1, . . . , nbw ; 1).

have improved convergence. Ultimately this procedure terminates and the
resulting expression has improved convergence but GiNaC trades whether
it is worth trying to improve convergence!
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Numerics

In practice the problem is not yet fully solved;

Current calculations run to weight 6 Goncharov polylogarithms and
no minimal basis of functions is available.

There can be sufficiently many polylogarithms to evaluate that
efficiency is an issue. For example in t̄t-production.

Better implementations can only occur by studying further and learning
more.
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Cyclotomic polylogarithms
Formalism

Our motivation for using the Goncharov polylogarithm is mathematical,
physically quantities are real so it should be possible to find real
representations of (at least some of) the Goncharov polylogarithms that
occur in Feynman diagram calculations. These are the cyclotomic
polylogarithms. The nth cyclotomic polynomial is the unique factor free
polynomial which divides xn − 1 but no xk − 1 for k < n.

Φ1(x) = x − 1, Φ2(x) = x + 1,

Φ3(x) = x2 + x + 1, Φ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x + 1, Φ6(x) = x2 − x − 1,

They are available in Mathematica using Cyclotomic[n,x].
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Cyclotomic polylogarithms
Formalism

A cyclotomic polylogarithm is formed using letters,

f lk (x) =
x l

Φk(x)
.

Any polynomial of degree n has n roots in the complex plane so in
principle one can factorise the cyclotomic polylogarithms and perform a
partial fraction decomposition,

Φ6(x) = (−(−1)
1
3 + x)((−1)

2
3 + x)

⇒ 1

Φ6(x)
=

(−1)2/3(
1 + 3
√
−1
) (

x + (−1)2/3
) +

(−1)2/3(
1 + 3
√
−1
) (

3
√
−1− x

) .
This represents a general property; the cyclotomic polynomials factor into
roots of unity. A cyclotomic polylogarithm is a Goncharov polylogarithm
using only roots of unity and 0 for its indices.
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Cyclotomic polylogarithms
Formalism

Issues concerning Goncharov polylogarithms are still to be resolved.
Cyclotomic polylogarithms are far better behaved and understood.
Immediately the convergence condition is satisfied for x ∈ (0, 1),

|ai | = 1⇒ |xi | ≤ |ai |,

with a roughly constant convergence property for any cyclotomic
polylogarithm. This means one can tabulate series and provide an efficient
implementation. One is available to weight 4 and for cyclotomy
6 Blümlein & MR.
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Cyclotomic polylogarithms
Constants

For large arguments one can use the same map as in the HPL case,

x =
1− t

1 + t
.

Like before, constants are generated that refer to cyclotomic polynomials
evaluated at 1. In the HPL case these numbers are well understood. For
the Goncharov case little is known about these numbers and it is worth
trying! This helps better understand possibly unknown relations. Pick a
particular set of cyclotomic letters,

x , f 01 , f 02 , f 13 , f 13 , f 04 , f 14 , f 06 , f 16 .

Next generate all possible cyclotomic polylogarithms evaluated at one.
(These are essentially Goncharov polylogarithms evaluated at up to 6th

roots of unity.)
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Cyclotomic polylogarithms
Constants

Eliminate all shuffle, stuffle and integration by parts relations from these
numbers meaning we have reduced to a basis. Additionally there is
another set of relations, the distributive relations, which occur for polylogs
at 1 with roots of unity indices Zhao ’08.) Up to weight 4 one obtains,

weight All Basis
1 19 = 9 4
2 29 = 81 2
3 39 = 729 7
4 49 = 6, 561 18

It remains to ask, could there be undiscovered relations Zhao ’08?
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PSLQ

We have seen many algebraic relations but hopefully there is still more to
the story. To fully solve aspects of this issue one can perform numeric
studies using the PSLQ algorithm.

PSLQ

Given a vector ~v construct when possible a ~u ∈ Zn with |~u| ≤ d such that
~u · ~v = 0.

A simple example would be to use Mathematica’s built-in function
FindIntegerNullVector on (π2, ζ(2)). Mathematica returns,

{1,−6}.

Using GiNaC’s evaluation tool one can evaluate the cyclotomic constants
to some large number of digits, such as 10,000, then look for integer
relations. PSLQ implementations allow one to control d which stops one
finding relations with arbitrarily large coefficients.
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PSLQ
Results

Broadhurst studied a problem of cyclotomic constants — cyclotomic
polylogs at 1 — up to weight 3 and gave a set of numbers,

π, ζ(2), ζ(3), log(2), log(3), Cl2

(π
3

)
:= =Li2(e

iπ
3 ), Li2

(
1

4

)
,

plus the real and imaginary parts of,

Li3

(
e

iπ
6

2

)
, Li3

(
i√
3

)
Recall that π and ζ(2) obey no PSLQ relation because ζ(2) ∝ π2.
Broadhurst and Bailey produced a FORTRAN PSLQ implementation (that
is much better than Mathematica’s). In principle one can write out vectors
of various numbers and see whether for some d there are any relations
amongst the numbers.
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PSLQ
Literature

A study of all Goncharov polylogarithms evaluated at the 6th-roots of
unity up to weight 6 was recently performed by Henn et al.

We differ slightly from their treatment in that we come from a
summation viewpoint and that means we consider a larger numbers of
objects that close algebras of sums. (The sums are the Mellin
transform of the cyclotomic polylogarithms.)

Additionally we are interested in proving results motivated by PSLQ to
learn if there is really any reduction of polylogarithms that can help
evaluation. There have been other analytic studies e.g. Kalmykov & Kniehl
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PSLQ
Basis construction

The exercise we performed was a full basis construction. Namely,

one computes all relations at weight 1 amongst the cyclotomic
constants and the numbers Broadhurst gave.

Then for weight 2, one computes all weight 2 numbers possible from
a minimal set of the weight 1 numbers.

Performs a PSLQ search to eliminate all relations between these
elements and the weight 2 cyclotomic constants.

Continuing to weight 4 the results are,

Weight All Basis PSLQ
1 91 = 9 4 4
2 92 = 81 2 2
3 93 = 729 7 5
4 94 = 6, 561 18 10

for the cyclotomic polylogarithms at 1. (The same as Henn et al.)
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PSLQ
Basis construction

A second exercise concerns the larger set of constants required to tabulate
a numerical implementation of the cyclotomic polylogarithms to weight 4
with cyclotomy 6. These numbers originate from the,

x =
1− t

1 + t

transform and there are slightly more of them. They fully include the
previous set. The results are,

Weight Basis New Numbers
1 5 1
2 8 3
3 41 14
4 185 < 40

The quantities of interest are in the form of real and imaginary parts;
taking the numbers themselves there are only 155.
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PSLQ
Relations

Most of these relations are checked to 10,000 digits while some later ones
are new and are not verified to extremely high precision yet. Some
example relations are ones missed by the basis construction. For example,

5

4
=G (e−i

π
6 ; 1) = =G (e−i

π
3 ; 1) = −π

3
.

This is an analytic relation not seen by the shuffle, stuffle, distributive and
integration by parts identities. Or,

<G (e−i
π
6 , e i

5π
6 ; 1) = − 11

288
π2 − 1

2

[
<G (e−i

π
6 ; 1)

]2
− 4<G (e−i

5π
6 , e i

π
3 ; 1).

Proving theses relations from integral representations may be quite
straightforward but one must know where to look.
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Weight 1

At weights 1 and 2 one can expect to prove all relations using Lewin’s
monograph. The important point is that the treatment is now analytic;
not algebraic. It is much harder to automate analytic procedures on a
computer. For weight 1,

G (a; x) := log
(

1− x

a

)
,

so it is easy to find results. The weight 1 6th roots of unity (our
conventions) lead to the following numbers,

π, log(2), log(3), log(2−
√

3).

These numbers, and their higher weight generalisations, constitute a basis
for other problems in field theory.
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Weight 2
For weight 2 (it appears) everything is known. Roughly speaking the
calculations proceed along the following lines. It is fairly easy to show that,

G (a, b; x) = Li2

(
b − x

b − a

)
− Li2

(
b

b − a

)
+ log

(
1− x

b

)
log

(
x − a

b − a

)
.

(In a region of the complex plane. Analytic continuation is possible with a
careful treatment of branch cuts Moch et al. ’02.
One can express the complex argument dilogarithm as,

Li2(re iθ) = Li2(r , θ) + ω log(r) +
1

2
Cl2(2ω)− 1

2
Cl2(2θ + 2ω) +

1

2
Cl2(2θ).

A classical result due to Kummer, see Lewin, with,

ω := tan−1
(

r sin θ

1− r cos θ

)
, Cl2(θ) := −

∫ θ

0
log
∣∣∣2 sin

x

2

∣∣∣ dx .
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Weight 2

Substituting in all the weight 2 cyclotomic polylogarithms and
implementing all known special values of Li2(r , θ) one finds all the PSLQ
relations and introduces additional new numbers,

ζ(2), Cl2

(π
6

)
, Li2(12(

√
3− 1)), <[Li2(−

√
2
3 −

1√
3
, 5π12 )],

Li2

(
1

4

)
, log(

√
3− 1), Li2(14(3

√
3− 5)), <[Li2(

√√
3+2
2 , π12)],

Cl2

(π
3

)
, Li2(4

√
3− 7), <[Li2(− 1√

2
, 5π12 )], =[Li2(

√
2+
√
3

2 , π12)]

(PSLQ allows one to check there are no further relations amongst these
numbers.) At weight 3 very little is known about the complex trilogarithm.
As a result it is not possible to prove the PSLQ relations just by applying
the literature and one starts to rely on the PSLQ results to introduce new
transcendental numbers.
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Summary

1 Today I have review the ongoing story of special functions in particle
physics.

2 There are many relations and a lot known about polylogarithms but
still there are open issues.

3 Fast numerical evaluation remains an issue for Goncharov
polylogarithms.

4 There are still unstudied relations amongst polylogarithms and their
particular values, essentially from weight 3 onwards.
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