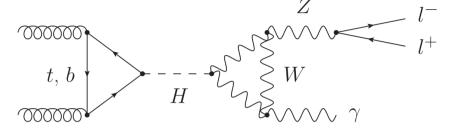
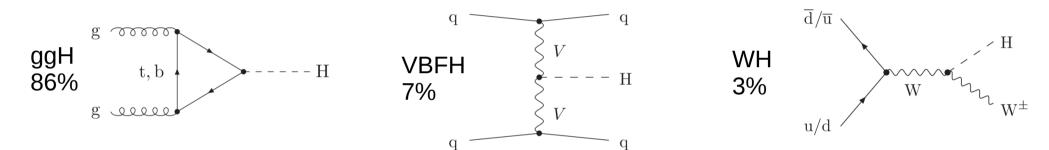
Search for the $Z\gamma$ Decay Mode of the Higgs Boson and for New High-Mass Resonances

at 13 TeV with the ATLAS Detector

Kurt Brendlinger, Han Shuo, Daniel Rauch, Kerstin Tackmann

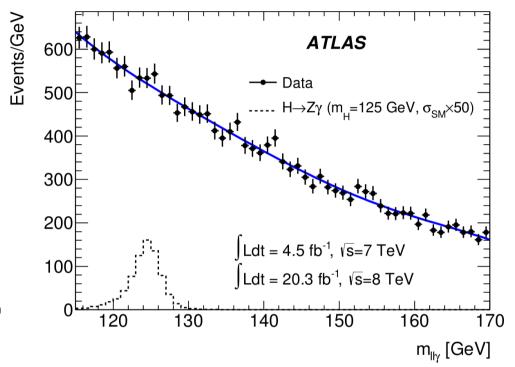
May 15th, 2017 - B9 seminar





Motivation & Introduction

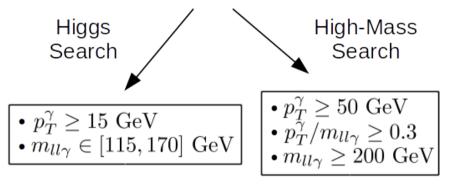
- $\rightarrow H \rightarrow Z(l^+l^-)\gamma$ not yet observed
 - This is expected! Rare decay

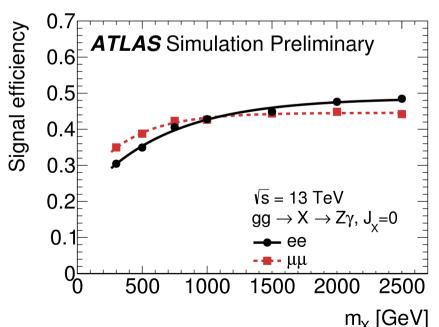

$$\mathcal{BR}(H \to Z\gamma) = 0.155\%$$
 and $\mathcal{BR}(Z \to e^+e^-/\mu^+\mu^-) = 6.8\%$

- Is still interesting
 - Rate as expected in standard model?
 - Higgs is a neutral scalar of a different nature? Composite?
 Additional uncoloured charged particles in the loop?
 - Some models predict enhancement of $H \to Z\gamma$
- \rightarrow Narrow spin-0 and spin-2 high-mass resonance (X) search

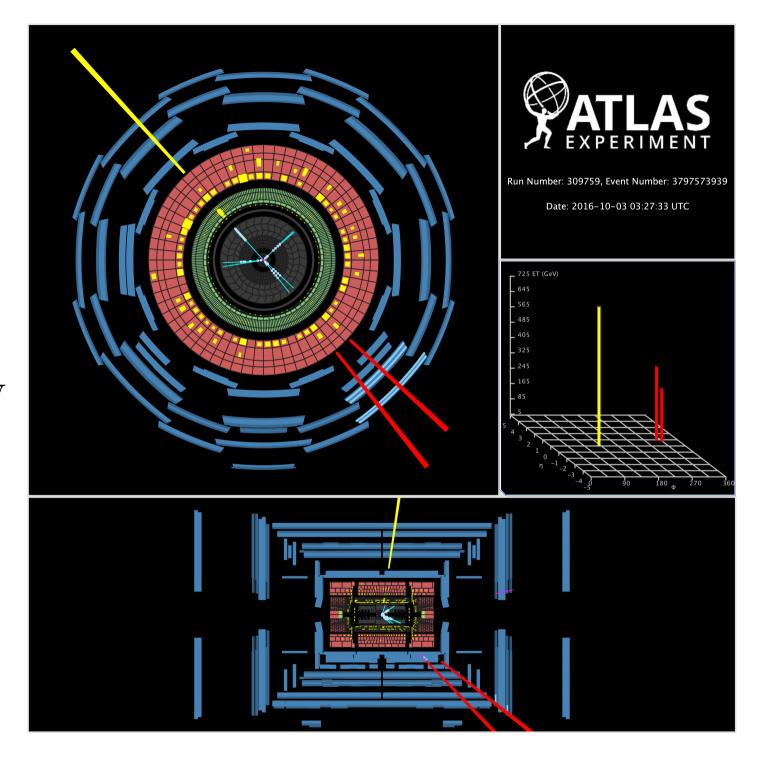
Analysis Strategy

- \rightarrow Main observable: $m_{ll\gamma}$ -distribution
- → Event selection
 - 1 Photon and a pair of oppositesign electrons / muons
- → Event categorisation
 - 6 categories for $H \to Z \gamma$ and 2 categories for $X \to Z \gamma$
 - Separate, data-driven signal & background models in each category

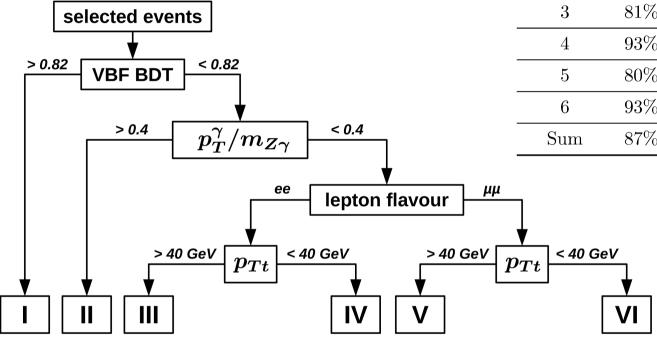

- → Unbinned likelihood fit
 - Simultaneously for all events and categories
 - Looking for excesses of data above fitted background
- Parameters of interest
 - Signal strength $\mu=\frac{(\sigma\cdot\mathcal{BR})_{\mathrm{obs}}}{(\sigma\cdot\mathcal{BR})_{\mathrm{SM}}}$ for $H\to Z\gamma$ (low-mass)
 - Cross section times branching ratio $\sigma \times \mathcal{BR}$ for $X \to Z\gamma$ (high-mass)


Event Selection

- Largely common event selection strategy for both mass regions with a few different final selection criteria
- ightharpoonup Corrections to improve $m_{ll\gamma}$ mass resolution
 - Clustering of final state radiation off muons
 - Kinematic fit of lepton momenta to match Z boson lineshape
- Backgrounds
 - Non-resonant $Z + \gamma$ production
 - Z + jet with jets misidentified as photons

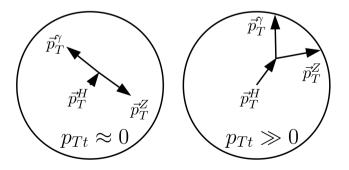

Common selection

- Single/Di-lepton triggers
- At least 2 opposite-sign leptons
- At least 1 photon
- At least 1 H/X candidate
- Lepton pair in Z mass window
- · Photon ID & isolation



- High-mass selection
- $ightharpoonup Z
 ightharpoonup \mu \mu$ event with $m_{Z\gamma}=1.57~{
 m TeV}$
- Event with the largest invariant mass

Event Categorisation


→ Higgs Search: 6 categories

Expected signal event yields for 36.1/fb and category decomposition

Catagony	Production Mode				Expected	
Category	ggH	VBFH	WH	ZH	$H \to Z\gamma$ Events	
1	31%	68%	1.3%	0.6%	1.3	
2	72%	14%	8.3%	5.3%	2.5	
3	81%	11%	4.7%	3.3%	3.6	
4	93%	4.1%	1.5%	1.1%	12	
5	80%	11%	4.8%	3.1%	4.4	
6	93%	4.1%	1.5%	1.0%	16	
Sum	87%	8.3%	2.6%	1.7%	40	

$$p_{Tt} = (\vec{p}_T^Z + \vec{p}_T^{\gamma}) \times \frac{\vec{p}_T^Z - \vec{p}_T^{\gamma}}{|\vec{p}_T^Z - \vec{p}_T^{\gamma}|}$$
$$= -2 \frac{\vec{p}_T^Z \times \vec{p}_T^{\gamma}}{|\vec{p}_T^Z - \vec{p}_T^{\gamma}|}$$

transverse plane

- → High-Mass Search: 2 categories
 - \bullet $ee\gamma$ and $\mu\mu\gamma$

Likelihood Function

ightharpoonup Unbinned likelihood fit to the $m_{ll\gamma}$ -distribution

$$L(\mu, \{\theta\}) = \frac{e^{-N}N^n}{n!} \times \left(\prod_{i=1}^n f_{\text{tot}}(m_{ll\gamma}^{(i)}, \mu, \{\theta\})\right) \times G(\{\theta\})$$

normalisation

loop over data events

signal and background modelling

penalty terms

Signal and background modelling

$$f_{\text{tot}} = \frac{1}{N} \sum_{c} \left\{ \left[N_{\text{sig}}^{(c)} + N_{\text{spur}}^{(c)} \right] \cdot f_{\text{sig}}^{(c)} + N_{\text{bkg}}^{(c)} \cdot f_{\text{bkg}}^{(c)} \right\}$$

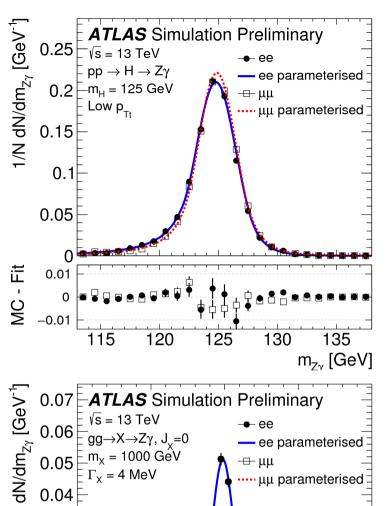
with

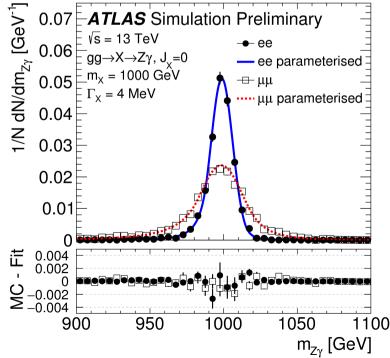
$$N_{\text{sig}}^{(c)} = \left(\int \mathcal{L}dt \right) \cdot \sum_{p} \sigma_{p} \cdot \mathcal{BR} \cdot \mu \cdot \mathcal{A}_{p} \cdot \epsilon_{p}^{(c)}$$

- → *n* observed events
- \rightarrow N expected events
- \rightarrow Signal strength μ
- \rightarrow Nuisance parameters $\{\theta\}$
- → Category c
- ightharpoonup Signal and background shapes $f_{
 m sig}^{(c)}$ and $f_{
 m bkg}^{(c)}$
- Integrated $\int \mathcal{L}dt$
- → Production mode p
- Total production cross sections σ_p and branching ratio \mathcal{BR}
- Acceptance x selection efficiency A_p
- ightharpoonup Category population fractions $\epsilon_p^{(c)}$

Signal Parameterisation

- Analytical model
 - Double-sided Crystal Ball function
 - Parameters from fit to Monte Carlo

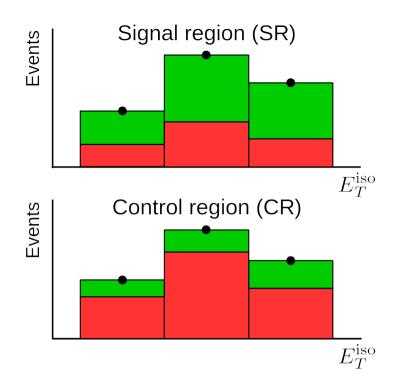

for both mass regions


Written without normalisation:

$$\propto \begin{cases}
(c_{\text{low}} - t)^{-n_{\text{low}}} & \text{for } t \leq -\alpha_{\text{low}} \\
e^{-t^2/2} & \text{for } t \in [-\alpha_{\text{low}}, \alpha_{\text{high}}] \\
(c_{\text{high}} + t)^{-n_{\text{high}}} & \text{for } t \geq \alpha_{\text{high}}
\end{cases}$$

with
$$t = \left(m_{ll\gamma} - m_X - \mu_{\rm CB}\right)/\sigma_{\rm CB}$$

- High-mass search
 - Parameterisation of signal efficiency times acceptance as a function of mass

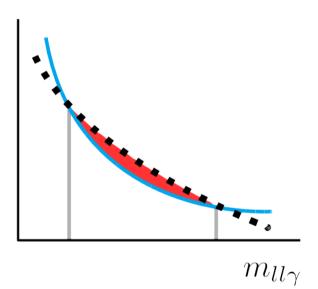

Background Decomposition

- Backgrounds
 - Non-resonant $Z + \gamma$ production
 - Z+j with jets misidentified as photons
- Method: Isolation template fit
 - Binned fit to the calorimeter isolation distribution
 - Signal region: tight photon identification
 - Control region: require modified loose but veto tight photon identification

$$N_i^{\text{SR}} = f_i N_{Z\gamma}^{\text{SR}} + \frac{N_{Zj,i}}{\sum_k N_{Zj,k}} N_{Zj}^{\text{SR}}$$

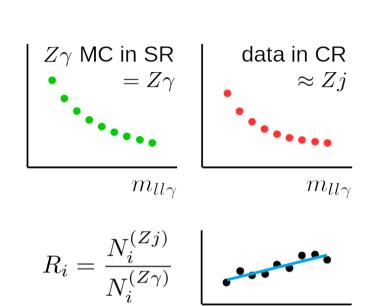
$$N_i^{\mathrm{CR}} = f_i l_i N_{Z\gamma}^{\mathrm{SR}} + N_{Zj,i}$$

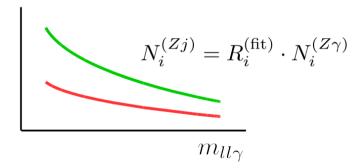
- Results
 - Higgs search: $N_{Z\gamma}^{\rm SR}/\left(N_{Z\gamma}^{\rm SR}+N_{Zj}^{\rm SR}\right)=84\%$
 - High-mass search: $N_{Z\gamma}^{
 m SR}/\left(N_{Z\gamma}^{
 m SR}+N_{Zj}^{
 m SR}
 ight)=92\%$



- ightarrow Signal shape f_i and leakage l_i from MC
- \rightarrow Total yields $N_{Z\gamma}^{\rm SR}$ and $N_{Z,i}^{\rm SR}$ in SR from fit
- \rightarrow Zj shape from fit
- \rightarrow Assumption: Zj shape same in SR and CR

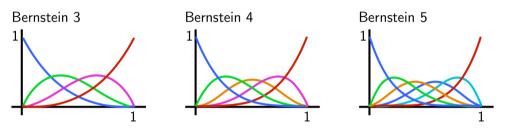
Cross checked with 2D (photon identification & isolation) sideband-based method


Background Parameterisation


- Background Model
 - Functional form from Monte Carlo
 - Parameter values from fit to data
- Evaluation of bias / spurious signal
 - Choice of background functions may induce would-be signal $N_{
 m spur}$
 - Evaluated by performing S+B fit to B-only $m_{ll\gamma}$ -distribution
 - Because of limited Zj MC statistics, use hybrid MC / data-driven technique to create B-only distribution

Background Parameterisation

- Background Model
 - Functional form from Monte Carlo
 - Parameter values from fit to data
- Evaluation of bias / spurious signal
 - Choice of background functions may induce would-be signal $N_{
 m spur}$
 - Evaluated by performing S+B fit to B-only $m_{ll\gamma}$ -distribution
 - Because of limited Zj MC statistics, use hybrid MC / data-driven technique to create B-only distribution



 $m_{ll\gamma}$

Background Parameterisation

- Results of background modelling
 - Low-mass search:
 2nd- and 4th-order
 Bernstein polynomials
 - High-mass search: $f_{\rm bkg} \propto (1-x^{1/3})^b x^{a_0}$

The Bernstein Functions

- → F-test: Check if higher-order parameterisation with more degrees of freedom would be beneficial
 - Better description of data vs. worse sensitivity
 - Test statistic $F = \frac{\frac{\chi_0^2 \chi_1^2}{p_1 p_0}}{\frac{\chi_1^2}{n p_1}}$
 - Confirms chosen functional forms / orders

Experimental Uncertainties

- Uncertainties on signal modelling
 - Lepton and photon energy and momentum scales and resolutions
- Uncertainties on background modelling
 - Spurious signal
- Uncertainties on signal yield
 - Luminosity
- Uncertainties on signal efficiency
 - Pile-up
 - Photon and lepton reconstruction, identification, isolation, trigger efficiency
 - Low-mass VBF category: jet energy scale and resolution

Overview of Theory Uncertainties

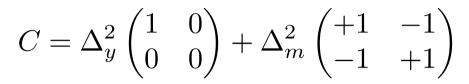
Uncertainties on cross sections and branching ratio

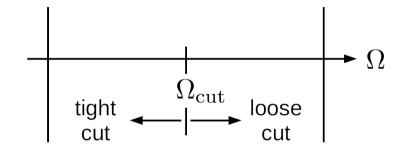
	ggH	VBF	WH	ZH
scale	3.9%	0.4%	0.6%	3.4%
PDF	3.2%	2.1%	1.9%	1.6%

	BR
total	5.8%

Additional 5% uncertainty on other interfering Higgs decays

From state-of-the-art calculations arXiv:1610.07922 [hep-ph]

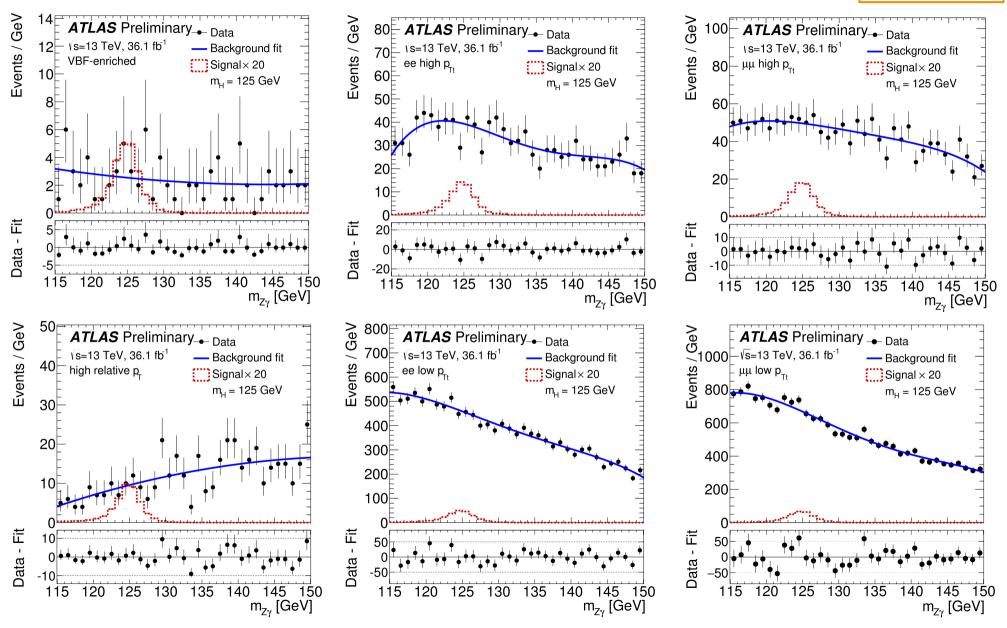

- → Uncertainties on category population fractions
 - Missing higher-order QCD corrections in the ggH production mode
 - ullet HRes ggH inclusive scale variations in the p_T^H spectrum
 - MCFM ggH H+2j at NLO scale variations for contamination of VBF category
 - Modelling uncertainty of variables entering the VBF BDT
 - PDF uncertainties
 - Evaluated with PDF4LHC15
 - Underlying event uncertainty
 - Comparison of Pythia8 with MPI On vs Off
- → Uncertainty on acceptance x selection efficiency
 - Comparison of Pythia8 with MPI On vs Off


Fixed-Order Stewart-Tackmann Uncertainties

- Parametrisation of covariance matrix for 2 categories
 - e.g. in jet bins $\{\sigma_{=N}, \sigma_{>N+1}\}$

$$\text{e.g.} = N \quad \text{vs.} \geq N+1 \quad \text{jets}$$

- Δ_y Overall yield uncertainty
- Δ_m Migration uncertainty


of first category

are calculated from perturbative scale variations

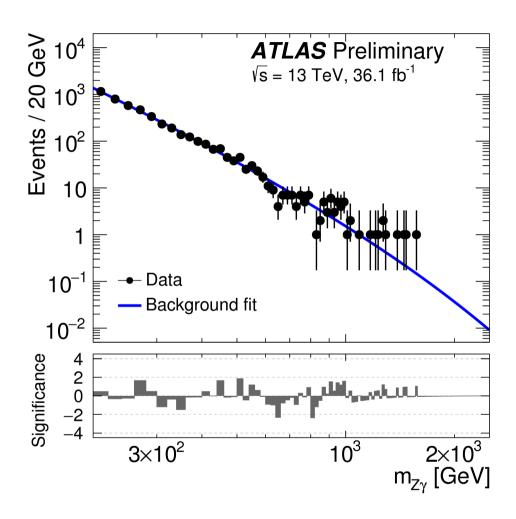
Possible complications depending on the categorisation: Contributions may be distributed across multiple categories

$$C = \Delta_y^2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & \alpha_2^2 & \alpha_2 \alpha_3 \\ 0 & \alpha_2 \alpha_3 & \alpha_3^2 \end{pmatrix} + \Delta_m^2 \begin{pmatrix} 1 & -\beta_2 & -\beta_3 \\ -\beta_2 & \beta_2^2 & \beta_2 \beta_3 \\ -\beta_3 & \beta_2 \beta_3 & \beta_3^2 \end{pmatrix} \xrightarrow{\text{selected events}} \bullet \{\alpha_i\} \text{ : rescaled category population fractions} \bullet \{\beta_i\} \text{ : category population fractions in absence}$$

Results: Invariant Mass Distributions

Data and fitted background in the different categories

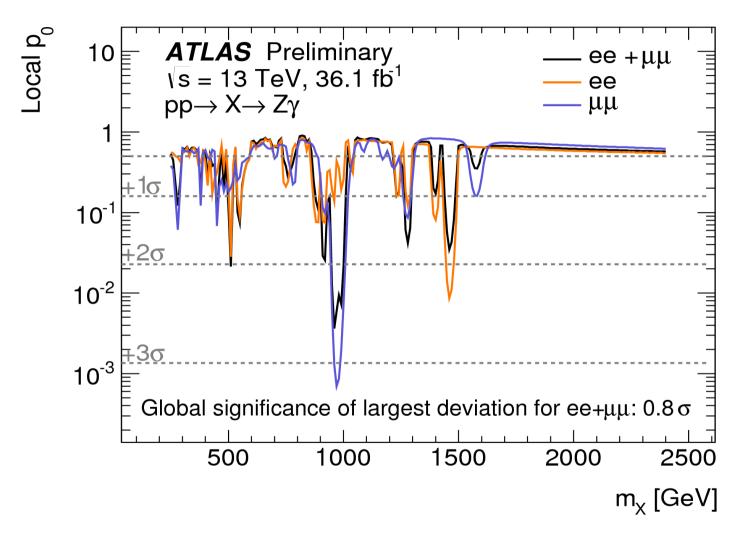
Results: Limits



- No significant localised excess above background-only hypothesis near Higgs mass
- $\rightarrow p_0$ -value and significance at $m_H=125.09~{\rm GeV}$
 - Expected: $p_0 = 0.33 \rightarrow \text{local significance } 0.5\sigma$
 - Observed: $p_0 = 0.16 \rightarrow \text{local significance } 1.0\sigma$
- \rightarrow Limit on signal strength $\mu = (\sigma \cdot \mathcal{BR})_{obs}/(\sigma \cdot \mathcal{BR})_{SM}$
 - Expected (no Higgs boson): $\mu < 4.4$
 - Expected (SM Higgs boson): $\mu < 5.2$
 - Observed: $\mu < 6.6$
- \rightarrow Limit on $\sigma(pp \to H) \cdot \mathcal{BR}(H \to Z\gamma) < 547 \text{ fb}$
- ightharpoonup Limit on $\mathcal{BR}(H \to Z\gamma) < 0.01$

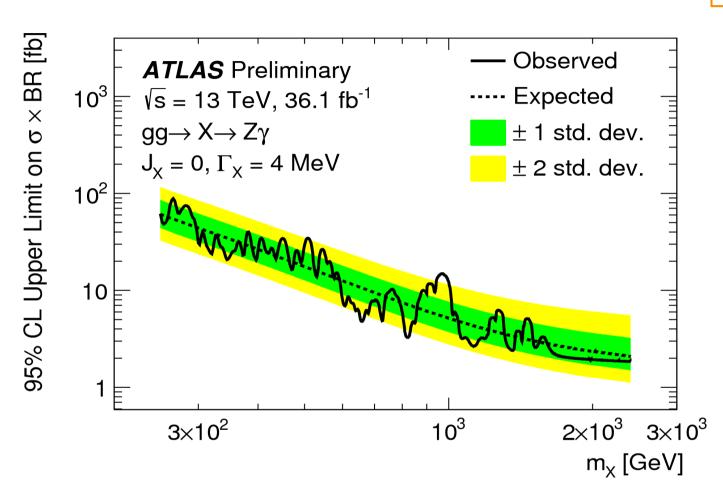
All limits at 95% CL

Results: Invariant Mass Distribution



- Data and fitted background for inclusive high-mass selection
 - Background-only fit performed in mass range [200, 2500] GeV

Results: Local p_0 -Value



- → Largest significance: 2.7σ (local) $\rightarrow 0.8\sigma$ (global)
 - Mass range $m_X \in [250, 2400] \; {\rm GeV}$

Results: Limits on $\sigma \times \mathcal{BR}$

- ullet Observed limits on $\sigma(pp \to X) \cdot \mathcal{BR}(X \to Z\gamma)$ at 95% CL
 - Spin-0 resonance: 88 fb 1.8 fb
 - Spin-2 resonance: 117 fb 2.4 fb (gg) and 94 fb 1.5 fb $(q\bar{q})$

Summary

- ightharpoonup Brand-new search for the $Z(l^+l^-)\gamma$ decay mode of the Higgs boson and of narrow high-mass resonances with the ATLAS detector
 - Based on the full 13 TeV dataset from 2015 / 2016 with 36.1 / fb

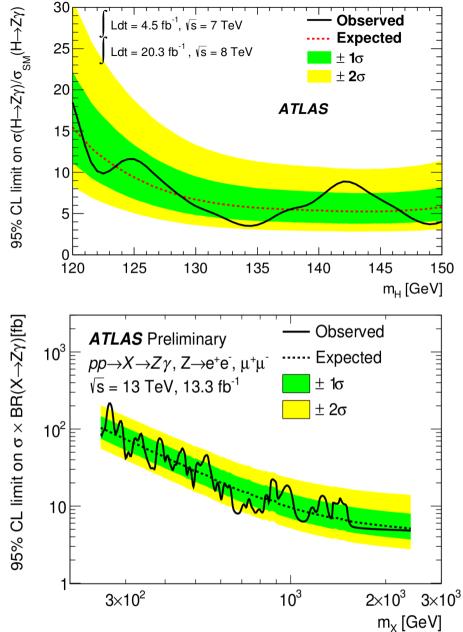
→ Low-mass search

- No significant excess above background-only expectation
- 95% CL limit on signal strength $\mu < 6.6$ corresponding to $\sigma(pp \to H) \cdot \mathcal{BR}(H \to Z\gamma) < 547 \; \mathrm{fb}$ and $\mathcal{BR}(H \to Z\gamma) < 0.01$

→ High-mass search

- Searching for narrow spin-0 and spin-2 resonances in the mass range $m_{ll\gamma} \in [250, 2400]~{
 m GeV}$
- No significant excess above background-only expectation
- 95% CL limits on $\sigma(pp \to X) \cdot \mathcal{BR}(X \to Z\gamma)$ between 117 fb and 1.5 fb
- → Paper is on its way...

Thanks for your attention!


Backup

Previous Measurements

- → Run 1 arXiv:1402.3051 [hep-ex]
 - Higgs search in leptonic Z channel using 2011 + 2012 datasets with 4.5/fb (7 TeV) + 20.3/fb (8 TeV)
 - Expected limit: $\mu = \sigma/\sigma_{\rm SM} = 9$
 - Observed limit: $\mu = \sigma/\sigma_{\rm SM} = 11$

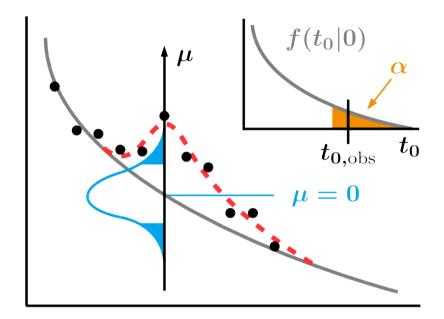
(for
$$m_H = 125.5 \text{ GeV}$$
)

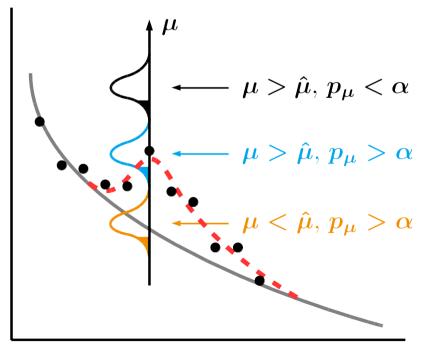
- → Run 2 ATLAS-CONF-2016-044
 - High-mass resonance search in leptonic Z channel using 2015 + 2016 dataset with 13.3/fb
 - Limits on $\sigma(X) \times \mathcal{BR}(X \to Z\gamma)$

Now: Both Higgs search and high-mass search in the leptonic \mathbb{Z} channel using full 2015 + 2016 dataset with 36.1/fb (13 TeV)

Statistics Procedures

- Testing for a signal
 - Test statistic


$$t_0 = -2\ln\frac{L(0,\hat{\theta}_0)}{L(\hat{\mu},\hat{\theta}_{\hat{\mu}})}$$


- → Setting upper limits
 - Test statistic

$$q_{\mu} = \begin{cases} -2 \ln \frac{L(\mu, \hat{\theta}_{\mu})}{L(\hat{\mu}, \hat{\theta}_{\hat{\mu}})} & \text{if } \hat{\mu} \leq \mu \\ 0 & \text{if } \hat{\mu} > \mu \end{cases}$$

- Vary hypothesised μ until crossing predefined confidence level (CL) $1-\alpha$
- Accepting / rejecting the null hypothesis

$$p = \int_{q_{\text{obs}}}^{\infty} f(q|\mu) dq \begin{cases} < \alpha & \to \text{reject} \\ > \alpha & \to \text{accept} \end{cases}$$

