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1 Motivation

• GW’s observed by LIGO come from merging BH’s, i.e. from a phenomenon involving strong

gravitational fields.

• In this regime one may find several phenomena modifying the standard GW emission, e.g.

creation of many weakly interaction light particles such as axions could modify the standard

expected waveform (see e.g. [1]) or modifications to GR could also change the waveform.

• First time we can learn from possible modifications to GR in the strong gravitational field regime.

• In this talk: focus on possible modifications to GR and the subsecuent modification to the

standard GW emission. We consider that only gravitons are involved in this completion, no new

DoF (see e.g. [2] for a paper where other DoF are included to modify gravity). We follow [3].

• Approach:

1. Construct EFT action UV completing Einstein-Hilbert up to a cutoff scale Λc. We only

include operators providing the most important corrections.

2. Study the observable implications of the new operators.

3. Compare the new operators with those from GR with enough precision.

2 The Modified Gravity EFT

We want to find a UV completion for the Einstein-Hilbert action

SEH [gµν ] =
M2
p

2

∫
d4x
√
−g R (2.1)

involving only gravitons. We will add higher derivative terms to this action a la EFT, and the

corresponding EFT will be valid (in the perturbative regime) for energies below a cutoff scale E < Λc.

• We require: new operators respect same symmetries as GR (Diff...), locality, causality, not

excluded by other experiments, testable.

• Organize new operators/interactions order by order in E/Λc, so most important ones: those

with less derivatives.

• We are modifying gravity below some energy scale Λc. But we perform experiments at high

energies and see no deviation from GR. Problem? No: we consider that the theories gets

‘resolved’ at higher energies (operators become small at higher energies). This happens e.g.

in String Theory with 4-graviton amplitudes. A similar mechanism forbids operators involving

metric and matter fields.
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• Because we are perturbing GR, we must be consitent with Λc → ∞, i.e. we consider new

operators that do not vanish on shell in GR limit. From Einstein’s equations on the vacuum:

Rµν = 0 (2.2)

In other words, these operators can ‘dissappear’ by redefining the metric and never appear at

observables (see e.g. [4]).

2.1 New operators

As said above, we proceed using EFT ideas and order operators order by order in derivatives. because

of (2.2), we can only use Riemann tensors.

• At the 2 derivative level we have the Einstein-Hilbert action (2.1).

• 4 derivatives: there are two operators

C ≡ RµναβRµναβ & C̃ ≡ εµνσρRµναβR σρ
αβ . (2.3)

But C̃ is a total derivative and for Rµν = 0, C = 0 is a total derivative as well. So no 4 derivative

term present.

• 6 derivatives:

Seff [gµν ] =
M2
p

2

∫
d4x
√
−g

(
R+ c3

RµνσρR
µναβR σρ

αβ

Λ4
c

+ c̃3
εµνωδR

ωδ
σρR

µναβR σρ
αβ

Λ4
c

)
.

These operators violate causality [5] unless c3 = c̃3 = 0 or c3 ∼ Λ2
c/M

2
p and we include an

infinite tower of higher spin particles coupled gravitationally to the Standard Model with a mass

m ∼
√

ΛcMp.

• 8 derivatives:

Seff [gµν ] =
M2
p

2

∫
d4x
√
−g

(
R+ c

C2

Λ6
c

+ c̃
C̃2

Λ6
c

+ c−
C̃C
Λ6
c

)
. (2.4)

So far, no reason why these operators are forbidden, so this will be our effective action.

Causality set constrains on coefficients of (2.4) [6]. Resulting EoM is

Rµα − 1

2
gµαR = − c

Λ6
c

(
8Rµναβ∇ν∇βC +

1

2
gµαC2

)
− c̃

Λ6
c

(
8εµνσρR αβ

σρ ∇ν∇β C̃ +
1

2
gµαC̃2

)

− c−
Λ6
c

(
4εµνσρR αβ

σρ ∇ν∇β C̃ + 4Rµναβ∇ν∇βC +
1

2
gµαCC̃

)
, (2.5)

where Rµν = 0 was used on the RHS. This gives a dispersion relation for high energy gravitons in

transverse traceless gauge

−k2 =
64

Λ6
c

[
c(kµkνR

αµνβeαβ)2 + c̃(kµkνε
αµσρR νβ

σρ eαβ)2 + c−(kµkνR
αµνβeαβ)(kµkνε

αµσρR νβ
σρ eαβ)

]
Causality implies that k2 ≤ 0, so for different polarizations eαβ and momenta kµ one finds

c, c̃ ≥ 0 ; c2− ≤ 4cc̃ .

• Here we neglect higher order operators.
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3 The 2 Black Hole system

To study the GW emission in this modified theory of gravity, one should include matter and them

solve (2.5) with Tµν 6= 0. This requires numerical methods and is hard...

Instead, we consider the 2BH system in the Post-Newtonian (PN) regime (v � 1).

Spp =

∫
d4x

[
δ(3)(~x− ~x1)

(
m1(1 +

~v21
2

) + d1

√
gαβ ẋα1 ẋ

β
1C + ...

)
+ δ(3)(~x− ~x2)

(
m2(1 +

~v22
2

) + ...

)]
.

Here for simplicity di = 0, but di 6= 0 can lead to interesting phenomena [3]. So the total action we

start with is

Stot = Seff + Spp . (3.1)

We will once again use an EFT approach to deal with the 2BH system, ignoring matter and gravi-

tational perturbations of λ < r and treat the system as an extended object with internal degrees of

freedom [7]. On the center of mass frame this gives an action:

Sext.obj. =

∫
dt

[
m1 +m2 +

µ(t)

2
~v212 − V (r(t)) +

1

2
Qij(t)R

i0j0 + ...

]
.

with µ(t) the reduced mass, Qij(t) the mass quadrupole that in the Newtonian limit is

Q
(N)
ij (t) =

∑
k

mk(xk(t)ixk(t)j − 1

3
xk(t)2δij) . (3.2)

3.1 Intuitive effect of modifying gravity

Before studying the effect of the new operators, recall that the angular velocity of the 2BH system,

and thus the frequency of the emitted GW’s, depends on the gravitational potential

ω ∼
√

1

r

dV

dr
. (3.3)

Also, the quadrupole formula (recall Thibaud’s lecture) tells that

[
hTTij (t, ~x)

]
quad

=
2G

R
Λij,klQ̈kl(t−R) = −8Gω2

R
Λij,klQkl(t−R) (3.4)

for a quasi-circular orbit.

The effect of modifying gravity will be to change the gravitational potential V (r(t)) (and thus the

frequency ω). It will also provide new channels of graviton emission, modifying the mass quadrupole

and therefore the amplitude hTTij .
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4 Quantitative effect of the modification

The new terms in (2.4) correspond to 4-graviton vertices. These leads to new Feynman diagrams

modifying the gravitational potential between both BH’s and providing new emission channels. Let

us see how this works by deriving Newton’s potential.

4.1 Newtonian potential from Feynman diagrams

We first need the corresponding Feynmann rules. The propagator of a graviton in GR is

−iηνβηµα + ηµβηαν − ηµνηαβ
2k2

δ(t1 − t2)(2π)3δ(3)(~q + ~k)

where ~k and ~q are outgoing momenta. We can compute the potential graviton (H00) coupling to point

particles Feymann rules from the point particle action

Spp =

∫
dt

(
−2mH00

Mp
− 2mH0iv

i

Mp
− ...

)
.

In the PN limit this implies that the vertex rule is [7]

−iδα0 δ
β
0

2m

Mp
e−i

~k·~x

Using these rules we compute the exchange of a potential graviton between two objects

Figure 1: Virtual (potential) graviton exchange between two point particles

which gives rise to the Newtonian potential as follows:∫
dt1

∫
dt2

∫
~q,~k

[
−iηνβηµα + ηµβηαν − ηµνηαβ

2k2
δ(t1 − t2)(2π)3δ(3)(~q + ~k)

] [
−iδα0 δ

β
0

2m1

Mp
e−i

~k·~x1

] [
−iδµ0 δν0

2m2

Mp
e−i~q·~x2

]

= −i2m1m2

Mp

∫
dt

∫
~k

d3−εk

(2π)3−ε
e−i

~k·~x12

k2
= i

∫
dt
Gm1m2

x12
= i

∫
dt(−VN ) = iSext.obj.

4.2 Corrections from the C2 term

In a similar way, one can compute the relevant diagrams modifying the above potential or the grav-

itational wave emission. Each of the new operators is a 4 graviton vertex, we will give some details

about how the C2 affects, then just give the results for the other operators.
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Contribution to the potential

The leading order diagrams are those with a unique 4 graviton vertex. There are 2 such diagrams

with all gravitons ending up on the two objects at leading order

Figure 2: Leading processes involving the C2 vertex giving rise to corrections to the gravitational

potential

but the first diagram is zero on the PN limit. The second one has a contribution

i

∫
dt

(
−64c6m1m

3
2

π3Λ6
cM

6
p

1

r(t)9

)
Including also the diagram where 1↔ 2, the leading order contribution to the potential is

∆VC2 =
8

π6

Gm1m2

r

(
2πc

Λcr

)6
G2(m2

1 +m2
2)

r2

Note that the perturbation parameter is

2πc

Λcr
� 1 . (4.1)

This modification of the gravitational potential will result in a change of the angular velocity of the

2BH system

∆ωC2 = −9

2

∆VC2

r2ω
⇒ ∆ωC2

ω
= − 9

π6

4G2(m2
1 +m2

2)

r2

(
2πc

Λcr

)6

Contribution to the emission amplitude

Now the leading diagrams have one 4 graviton vertex and one outgoing graviton. There is only one

in this case:

Figure 3: Leading contribution from C2 operator correcting graviton emission.

The corresponding amplitude is

i
m1m

2
2c

6

Λ6
cM

4
p

7 · 16

π2

∫
dt

(
3rirj

r8
− δij

r6

)
R0i0j(h̄)
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where h̄ represents the outgoing on-shell graviton. This diagram together with the one where 1 ↔ 2

give

SC2,rad =

∫
dt

21

π6

(
2πc

Λcr

)6(
G(m1 +m2)

r

)2
m1m2

m1 +m2

(
rirj − r2δij

3

)
R0i0j(h̄) (4.2)

or equivalently modify

Qij →

(
1 +

42

π6

(
2πc

Λcr

)6(
G(m1 +m2)

r

)2
)
Q

(N)
ij

4.3 Contributions from other vertices

The other 2 operators also give rise to modifications of the gravitationalk potential and emission

amplitude. We skip the details here, which can be found in [3].

5 Observable consecuences

Let us consider how to measure the above effects. We restrict to quasi circular orbits where ω � ṙ/r

We first observe that since both the frequency and the mass quadrupole get affected, plugging in

both changes in (3.4) to leading order in c (only the C2 operator effects)

[
∆hTTij (t, ~x)

]
C2 =

(
2πc

Λcr

)6
8G2

π6r2

(
21(m1 +m2)2

4
− 9(m2

1 +m2
2)

)
2G

R
Λij,klQ̈kl(t−R) (5.1)

where the first part comes from the new emission channel and the second one from the frequency

change.

Let’s see how it scales

∆hC2 ∼ h
∆ωC2

ω
∼ h 1

(Λcr)6

(
Gm

r

)2

∼ h 1

(Λcr)6
v4 (5.2)

This is small due to v and also to Λcr. How can we know if this term is present? Compute the

PN correction to ∆h in GR of larger order than v4 such that the higher orders can compensate for

the Λcr powers. Then we can trust this contribution. Specially when Λcr ∼ 1.

Similarly we can perform the same analysis for magnitudes other ∆h/h and see how they scale

in powers of v to compare them to the GR expansion in the PN regime. We can also do the same

including the effect of the 2 other vertices. The different scalings are given in this table

where Jij is the current quadrupole, P the emitted power and a is related to the spin of the BH’s.

According to [3], the current experiments that could provide more information about possible

modifications of gravity are X-ray binaries, where there is also a rather strong gravitational field. The

modified gravitational potential implies a modification deviating from Schwarzschild/Kerr metric that

may be observable.
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