






















66 4. Reheating after Inflation

4.3 Parametric Resonance and Preheating

The perturbative analysis above has an important short coming: it ignored the coherent nature

of the oscillating inflaton field. In reality, the beginning of reheating is not well-described by

a superposition of free asymptotic single inflaton states. Instead the inflaton is a coherently

oscillating homogeneous field. When we take this into account we are led to the possibility that

the time-dependent classical inflaton background � induces the quantum mechanical production

of matter particles �. In this section, we will see that this can completely change our conception

of reheating.

Figure 4.1: Instability bands of the Mathieu equation.

4.3.1 QFT in a Time-Dependent Background

Consider the quantum field �̂ in the classical background �(t),

�̂(t,x) =
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k

�⇤
k(t)e

ik·x
⌘

, (4.3.16)

where â†
k

and â
k

are creation and annihilation operators, respectively, and the mode functions

satisfy5
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+ g2�2(t)

◆

�k = 0 . (4.3.17)

5Here, we have ignored the possibility of an explicit mass for the field �, i.e. we have set m� ⌘ 0. It would be

straightforward to include finite m�, but since it doesn’t lead to qualitatively new features we won’t do so.
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Figure 4.2: (Reproduced from Kofman et al.) Narrow parametric resonance for the field � in the theory
1

2

m2�2 in Minkowski space for q ⇠ 0.1. Here, time is plotted in units of [m/2⇡]�1.

Exercise. Repeat the analysis for the coupling 2g2���2. First, show that the problem can be mapped
to a mathematically equivalent one. Then match the parameters of the answers.

Fig. 4.2 show a numerical simulation of the regime of narrow parametric resonance. For each

oscillation of the field �(t) the growing mode of the field � oscillates one time. The upper figure

shows the growth of the mode �k for the momentum k corresponding to the maximal speed of

growth. The lower figure shows the logarithm of the occupation number of particles nk in this

mode. As we see, the number of particles grows exponentially, and ln nk in the narrow resonance

regime looks like a straight line with a constant slope. This slope divided by 4⇡ gives the value

of the parameter µk. In this particular case µk ⇠ 0.05, exactly as it should be in accordance

with the relation µk ⇠ 1
2q for this model.

Narrow Resonance as Bose Condensation⇤

The narrow resonance e↵ect can also be understood as the Bose condensation of �-particles.6

Let us sketch the basic reasoning for the case 2g2���2 : In this case, a single � decays into

two �. In the rest frame of the �-particle, the momenta of the two produced �-particles have

the same magnitude k, but opposite directions. If the corresponding states in phase space are

already occupied, then the inflaton decay is enhanced by a Bose factor. The rate of the � ! ��

process is proportional to
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6Mukhanov, Physical Principles of Cosmology.
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Expansion and Rescattering

So far, this has ignored the expansion of the universe and the rescattering of the produced

�-particles. Both e↵ects reduce the e�ciency of the resonance. First, we see that expansion

narrows the width of the resonance band, �k / �(t) / 1/t. Moreover, due to the expansion,

modes redshift out of the resonance. The rescattering also moves modes out of the resonance

band. This shows that narrow parametric resonance is quite delicate and requires detailed

numerical simulations including all relevant e↵ects to decide if it really occurs.

4.3.3 Broad Resonance

Next, we consider the Mathieu equation (4.3.19) in the regime q � 1. Fig. 4.1 shows that

instabilities now occur for much broader ranges of k. Moreover, we anticipate that the instability

coe�cients µk will be larger and reheating will be very e�cient. In this section, we discuss broad

parameteric resonance both numerically and analytically.
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Figure 4.3: (Reproduced from Kofman et al.) Broad parametric resonance for the field � in Minkowski
space for q ⇠ 2 ⇥ 102 in the theory 1

2

m2�2.

Numerical Simulations

A numerical solution in the broad resonance regime in a Minkowski background is shown in

fig. 4.3. For each oscillation of the field �(t) the field �k oscillates many times (since, for q � 1,

the e↵ective mass for � is much larger than the inflaton mass, m� ⌘ g� � m). Each peak

in the amplitude of the oscillations of the field � corresponds to a place where �(t) = 0. At

Figure 1. A late time snap shot of the energy density in oscillon preheating. The model is that
of Eq. (2.12) with ↵ = 1/2 and M = 0.01M

P

. The box size is L = 50/m and the energy density
isosurface is taken at a value 5 times the average energy density.

3 Gravitational Waves: Analytical study

There are three possible ways where gravitational waves can arise as a consequence of an
oscillon-dominated phase in the early Universe – during their formation, during the oscil-
lon dominated phase itself, and during their decay and the subsequent thermalization of
the Universe. We cannot address the last issue, since this process is beyond the scope of
the model we are analyzing. The first process will be driven by strong nonlinear, non-
perturbative dynamics and will be investigated numerically in the following section. In
this Section we give a semi-analytical treatment of gravitational wave production in the
oscillon-dominated phase itself.

In simulations of oscillon formation, the resulting oscillons are essentially at rest with
respect to the background spacetime. This makes sense: we can view an oscillon as a col-
lection of a scalar particles (i.e., a system with a large number of degrees of freedom) which
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