HOMs as a beam and cavity
diagnostic
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 Forty cavities exist at FLASH.

* Couplers/cables already exist.

» Electronics installed to monitor HOMs (wideband and narrowband response).
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* Higher Order Modes generated in accelerating cavities must
be damped.
» These HOMs may also be monitored to obtain beam/cavity
information.
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HOMs as Diagnostics

e No need to install new beamline hardware

— HOM power must be coupled out of the
cavities to prevent BBU, etc.

— Therefore beamline and cryogenic hardware
already exists.

e Large proportion of linac length occupied
by structures.



Beam Measurements

e Transverse.

— Dipole modes couple to
transverse beam offsets.

— Use narrowband

electronics to monitor a

particular dipole line.

Pure offset

___—7_—{1___

Angled trajectory

— A A A= A~
Tilted bunch

» Magnitude of angle response may
be reduced by cell to cell cancellation.

e Longitudinal

HOM coupler tuned to
reject accelerating mode.

Rejection not perfect, and
amplitude is approx equal
to high R/Q monopole
modes.

Beam phase and
accelerating phase
Information therefore exist
on the same cable.

Use a broadband system to
measure 1.3 GHz
(accelerating mode) and a
strong monopole mode.



HOMs as a Cavity Diagnhostic

 Many modes in the spectrum.
— Monopole, dipole, quadrupole, etc.
— Frequency, Q, R/Q, etc. dependent on cavity
construction.
« HOM spectrum directly influenced by the
iInternal cavity shape.

— The low frequency HOMSs studied here are not
affected by the iris positions.

— Effect of couplers can offset the modes from the
cavity centre.



Broadband Measurements



Broadband HOM Measurements at
TTF

 Both couplers on ACC5 cavity #4 connected to a
10 GS/s, 6 GHz scope.

« Beam was steered to 130 random points in X, X',
Y, YV’ In order to calibrate our narrowband HOM

system.
— +-2 mm, +- 1mrad range.
— The broadband measurements were parasitic.

— Unfortunately the scope acquisition was not
necessarily on the same pulse as the BPM
acquisition.

« Position & angle were calculated from the corrector settings.
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Interpreting the spectrum

How to distinguish modes from scope artifacts?
How to distinguish different types of modes?

Monopole

— Should have a fixed phase relationship with 1.3 GHz,
while scope artifacts will not.

— Correct for random scope phase, and compare the
phase of each frequency with the phase of the 1.3 GHz.

Dipole

— Should have a strong relationship with the beam
position.

— Predict beam position from corrector settings, and
regress against complex amplitude of each frequency.
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fit error / rms variation
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fit error / rms variation
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Dipole identification: ratio of fit error to total variation
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Preliminary Mode Centres

Freq/Hz x Centre/ mm y Centre /mm Freq/Hz x Centre/mm y Centre/ mm
1.6269E+9 0.001 0.018 2.5678E+9 0.047 0.013
1.6272E+9 2.447 0.385 2.5691E+9 -0.001 0.005
1.6391E+9 0.061 -0.484 2.5699E+9 0.014 0.019
1.6574E+9 0.002 -0.040 2.5706E+9 0.006 -0.266
1.6576E+9 1.247 0.238 2.5726E+9 0.001 -0.038
1.7052E+9 0.044 -0.428 2.5730E+9 0.000 0.001
1.7056E+9 -0.085 -0.010 2.5737E+9 0.011 0.024
1.7334E+9 -0.002 -0.270 2.5753E+9 -0.006 0.030
1.7614E+9 0.016 -0.005 2.5757E+9 0.001 -0.006
1.8399E+9 0.621 0.273 2.5761E+9 -0.011 -0.019
1.8543E+9 0.125 -0.952 2.5764E+9 0.001 -0.040
1.8652E+9 1.613 -1.486 2.5775E+9 -0.008 0.152
1.8735E+9 0.579 -1.227 2.5780E+9 -0.006 0.031
1.8737E+9 0.747 0.378 2.5801E+9 0.178 -1.549
1.8794E+9 1.373 -0.619 3.0807E+9 0.066 -0.001
1.8796E+9 0.020 -0.003 3.0824E+9 -0.002 -0.074
1.8828E+9 -0.007 0.008 3.0837E+9 0.071 -0.027
1.8831E+9 0.047 0.110 3.3092E+9 0.131 -0.303
1.8851E+9 0.051 -0.253 3.3538E+9 0.047 -0.517
1.8855E+9 2.133 0.933 3.3539E+9 0.297 -0.099
2.2893E+9 0.025 0.015 3.3558E+9 8.299 -8.022
2.5024E+9 0.047 -0.972 3.3561E+9 0.251 0.468
2.5383E+9 -0.019 0.016 3.3592E+9 -0.388 0.397
2.5615E+9 0.028 -0.351 3.3629E+9 -0.593 -0.907
2.5628E+9 0.000 -0.003 4.4652E+9 1.235 -0.421
2.5640E+9 -0.026 -0.078 4.4735E+9 0.816 -2.129




I\/Ionopole I\/Iode I\/Ieasurements
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* Digitise the HOM signal with a broadband scope,

— 10 GS/s, 6 GHz
« Can measure phase of beam induced monopole lines.
« HOM coupler allows a small amount of the fundamental to leak through.

— Accelerating RF and beam induced HOMSs exist on same cable.
— No cable expansion issues.



Monopole Mode Measurements

phase in degrees L-band

0 210 410 610 80
time, seconds
Measurement of the 1.3 GHz phase
— 5 degree phase change command from the RF control system.
Noise is 0.08 degrees at 1.3 GHz

— Estimated by comparing the measurement from two couplers from the same
cavity.

When the beam phase is compared to the RF phase of two cavities on the
same klystron, an RMS of 0.3 degrees is measured.

— Microphonics?



Narrow band Measurements



Narrow-band Measurements

16000 -

From HOM Bandpass
Port = Filter Mixer Digitizer
1.7GHz 20MHz IF
TE111-6 * *
Local oscillator
1.68 GHz clock

e ~1.7 GHz tone added for calibration purposes.

 Cal tone, LO, and digitiser clock all locked to
accelerator reference.

108 Mhz
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| |» Dipole modes exist in two polarisations
corresponding to orthogonal transverse
| |directions.

» The polarisations may be degenerate
" lin frequency, or may be split by the

perturbing affect of the couplers, cavity
I limperfections, etc.

' |» May be difficult to determine their
| [frequencies.

« 10°




Method

electron bunch BPMS
acceleratmg module

/ O -_L( .J_
LWL R
v ¢ i ¢

steering magnets HOM electronics

Develop model for the machine

Steer beam using two correctors upstream of the
accelerating module.

Record the response of the mixed-down dipole
mode at each steerer setting.

Data analysed using SVD method to reconstruct
waveforms due to motion in each dimension.
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Position predicted from ACCS5 Cavs 3 and 5/ mm

redict position at one cavity from

positions at adjacent cavities

X resolution ~ 6.1um
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Position predicted from ACC5 Cavs 3 and 5/ mm

Y resolution ~ 3.3 um
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Apply calibration to a different dataset

Module 2 : y resolutlon 3. 76um Module 3. y resolutlon 6. 55um
14 . 15
1

14

Residual / um esidual / um

Module 4. y resolutlon 8.85 um Module 5 : y resolution=1.90 um
10 .




Theoretical Resolution

: R .
Energy in mode — U = [j-w-qz Thermal noise — U, = %ka

Q) 2

e Corresponds to a limit of ~100 nm

— Included 10 dB cable losses, 6.5 dB noise figure, and 10 dB
attenuator in electronics.

 Need good charge measurement to perform
normalisation.
— 0.1% stability of toroids, to achieve 1 um at 1 mm offset.
— Not the case with the FLASH toroids.

 LO has a measured phase noise of ~1 degree RMS.
— This will mix angle and position, and will degrade resolution.

— LO and calibration tone have a similar circuit, and cal. tone has
much better phase noise.

» Therefore, should be simple to improve.



Integrated with DOOCS

Toroids immediately
upstream of the modules
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Integrated with DOOCS

BPMs up- and
downstream of
each module
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Integrated with DOOCS
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» Output is the average of all enabled HOM BPMs in each module.



Cavity Alignment ACC4

e X: 100 microns RMS misalignment, 37 micron
measurement reproducibility

e Y: 215 micron RMS misalignment, 23 micron

measurement reproducibility
02(_30:4 cavity centers Xstd =0.1048 err =0.036773

mm
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acc:4 cavity centers Ystd =0.31549 err =0.023571
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Cavity Alignment ACCS5

e X: 240 micron misalignment, 9 micron
reproducibility

e Y: 200 micron misalignment, 5 micron
reproducibility

acc:5 cavity centers Xstd =0.24111 err =0.0089929
0.5-

1 2 3 4 5 6 7 8

acc:5 cavity centers Ystd =0.20323 err =0.0048113
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Summary

« HOMSs are useful for diagnostic purposes.
— Beamline hardware already exists.
— Large proportion of linac occupied with structures.

Cavity/Structure diagnostics.
— Alignment of cavities within supercooled structure.

— Possiblility of exploring inner cavity geometry by
examining HOM output and comparing to simulation.

 Beam diagnostics.

— Accelerating RF and beam induced monopole HOM
exist on same cable.

* No effect from thermal expansion of cables.
e Can find beam phase with respect to machine RF.

— Dipole modes respond strongly to beam position.
e Can use these to measure transverse beam position.
e ~2 um demonstrated, (65 nm thermal limit)



