HOMs as a beam and cavity diagnostic

CEA, DESY, FNAL, SLAC, Cockroft

276	mm
-----	----

HOMs as Diagnostics

- No need to install new beamline hardware
 - HOM power must be coupled out of the cavities to prevent BBU, etc.
 - Therefore beamline and cryogenic hardware already exists.
- Large proportion of linac length occupied by structures.

Beam Measurements

- Transverse.
 - Dipole modes couple to transverse beam offsets.
 - Use narrowband electronics to monitor a particular dipole line.

• Magnitude of angle response may be reduced by cell to cell cancellation.

- Longitudinal
 - HOM coupler tuned to reject accelerating mode.
 - Rejection not perfect, and amplitude is approx equal to high *R*/Q monopole modes.
 - Beam phase and accelerating phase information therefore exist on the same cable.
 - Use a broadband system to measure 1.3 GHz (accelerating mode) and a strong monopole mode.

HOMs as a Cavity Diagnostic

- Many modes in the spectrum.
 - Monopole, dipole, quadrupole, etc.
 - Frequency, Q, R/Q, etc. dependent on cavity construction.
- HOM spectrum directly influenced by the internal cavity shape.
 - The low frequency HOMs studied here are not affected by the iris positions.
 - Effect of couplers can offset the modes from the cavity centre.

Broadband Measurements

Broadband HOM Measurements at TTF

- Both couplers on ACC5 cavity #4 connected to a 10 GS/s, 6 GHz scope.
- Beam was steered to 130 random points in x, x', y, y' in order to calibrate our narrowband HOM system.
 - +-2 mm, +- 1mrad range.
 - The broadband measurements were parasitic.
 - Unfortunately the scope acquisition was not necessarily on the same pulse as the BPM acquisition.
 - Position & angle were calculated from the corrector settings.

Interpreting the spectrum

- How to distinguish modes from scope artifacts?
- How to distinguish different types of modes?
- Monopole
 - Should have a fixed phase relationship with 1.3 GHz, while scope artifacts will not.
 - Correct for random scope phase, and compare the phase of each frequency with the phase of the 1.3 GHz.
- Dipole
 - Should have a strong relationship with the beam position.
 - Predict beam position from corrector settings, and regress against complex amplitude of each frequency.

Monopole Identification: phase noise

Preliminary Mode Centres

Freq / Hz	x Centre / mm	y Centre / mm
1.6269E+9	0.001	0.018
1.6272E+9	2.447	0.385
1.6391E+9	0.061	-0.484
1.6574E+9	0.002	-0.040
1.6576E+9	1.247	0.238
1.7052E+9	0.044	-0.428
1.7056E+9	-0.085	-0.010
1.7334E+9	-0.002	-0.270
1.7614E+9	0.016	-0.005
1.8399E+9	0.621	0.273
1.8543E+9	0.125	-0.952
1.8652E+9	1.613	-1.486
1.8735E+9	0.579	-1.227
1.8737E+9	0.747	0.378
1.8794E+9	1.373	-0.619
1.8796E+9	0.020	-0.003
1.8828E+9	-0.007	0.008
1.8831E+9	0.047	0.110
1.8851E+9	0.051	-0.253
1.8855E+9	2.133	0.933
2.2893E+9	0.025	0.015
2.5024E+9	0.047	-0.972
2.5383E+9	-0.019	0.016
2.5615E+9	0.028	-0.351
2.5628E+9	0.000	-0.003
2.5640E+9	-0.026	-0.078

Freq / Hz	x Centre / mm	y Centre / mm
2.5678E+9	0.047	0.013
2.5691E+9	-0.001	0.005
2.5699E+9	0.014	0.019
2.5706E+9	0.006	-0.266
2.5726E+9	0.001	-0.038
2.5730E+9	0.000	0.001
2.5737E+9	0.011	0.024
2.5753E+9	-0.006	0.030
2.5757E+9	0.001	-0.006
2.5761E+9	-0.011	-0.019
2.5764E+9	0.001	-0.040
2.5775E+9	-0.008	0.152
2.5780E+9	-0.006	0.031
2.5801E+9	0.178	-1.549
3.0807E+9	0.066	-0.001
3.0824E+9	-0.002	-0.074
3.0837E+9	0.071	-0.027
3.3092E+9	0.131	-0.303
3.3538E+9	0.047	-0.517
3.3539E+9	0.297	-0.099
3.3558E+9	8.299	-8.022
3.3561E+9	0.251	0.468
3.3592E+9	-0.388	0.397
3.3629E+9	-0.593	-0.907
4.4652E+9	1.235	-0.421
4.4735E+9	0.816	-2.129

Monopole Mode Measurements

- Digitise the HOM signal with a broadband scope,
 10 GS/s, 6 GHz
- Can measure phase of beam induced monopole lines.
- HOM coupler allows a small amount of the fundamental to leak through.
 - Accelerating RF and beam induced HOMs exist on same cable.
 - No cable expansion issues.

Monopole, Mode Measurements

- Measurement of the 1.3 GHz phase
 - 5 degree phase change command from the RF control system.
- Noise is 0.08 degrees at 1.3 GHz
 - Estimated by comparing the measurement from two couplers from the same cavity.
- When the beam phase is compared to the RF phase of two cavities on the same klystron, an RMS of 0.3 degrees is measured.
 - Microphonics?

Narrow band Measurements

Narrow-band Measurements

Method

- Develop model for the machine
- Steer beam using two correctors upstream of the accelerating module.
- Record the response of the mixed-down dipole mode at each steerer setting.
- Data analysed using SVD method to reconstruct waveforms due to motion in each dimension.

Predict position at one cavity from positions at adjacent cavities

X resolution ~ $6.1 \mu m$

Y resolution ~ 3.3 µm

Apply calibration to a different dataset

Theoretical Resolution

Energy in mode –
$$U = \left(\frac{R}{Q}\right) \cdot \frac{\omega}{2} \cdot q^2$$

Thermal noise – $U_{th} = \frac{1}{2}k_bT$

- Corresponds to a limit of ~100 nm
 - Included 10 dB cable losses, 6.5 dB noise figure, and 10 dB attenuator in electronics.
- Need good charge measurement to perform normalisation.
 - 0.1% stability of toroids, to achieve 1 um at 1 mm offset.
 - Not the case with the FLASH toroids.
- LO has a measured phase noise of ~1 degree RMS.
 - This will mix angle and position, and will degrade resolution.
 - LO and calibration tone have a similar circuit, and cal. tone has much better phase noise.
 - Therefore, should be simple to improve.

Integrated with DOOCS

Integrated with DOOCS

Integrated with DOOCS

• Output is the average of all enabled HOM BPMs in each module.

Cavity Alignment ACC4

- X: 100 microns RMS misalignment, 37 micron measurement reproducibility
- Y: 215 micron RMS misalignment, 23 micron measurement reproducibility

Cavity Alignment ACC5

- X: 240 micron misalignment, 9 micron reproducibility
- Y: 200 micron misalignment, 5 micron reproducibility

Summary

- HOMs are useful for diagnostic purposes.
 - Beamline hardware already exists.
 - Large proportion of linac occupied with structures.
- Cavity/Structure diagnostics.
 - Alignment of cavities within supercooled structure.
 - Possibility of exploring inner cavity geometry by examining HOM output and comparing to simulation.
- Beam diagnostics.
 - Accelerating RF and beam induced monopole HOM exist on same cable.
 - No effect from thermal expansion of cables.
 - Can find beam phase with respect to machine RF.
 - Dipole modes respond strongly to beam position.
 - Can use these to measure transverse beam position.
 - ~2 um demonstrated, (65 nm thermal limit)