3.9GHz Wakefields

Calculation of wakefields in 3.9GHz cavities: what if we had to do without dampers? (a work in progress) Status report of FNAL effort

Leo Bellantoni / FNAL

HOMs in SCRF Workshop DESY, 22-23 Jan 2007

Calculation Method

- Long-range wakefield calculation originally developed for 3.9GHz TM₁₁₀ mode cavity: FNAL-TM-2356.
- Started with formalism of R. Wanzenberg, TESLA 2001-33.
- Used R/Q values of Khabibouline, Solyak and Wanzenberg in FNAL-TM-2210 / TESLA-FEL 2003-01.

Calculation Method

$$R^{(n)}/Q = \frac{2}{\omega_n} \frac{\left\{ V_n(\vec{r}) / r^m \cos\left[m(\phi - \phi_n) \right] \right\}^2}{4U_n}$$

$$W_{II}^{(n)}(s) = \frac{R^{(n)}}{Q} \omega_n \cos\left(\frac{\omega_n s}{c}\right) \exp\left(-\frac{s}{c\tau_n}\right)$$

$$W_{\perp}^{(n)}(s) = c \frac{R^{(n)}}{Q} \sin\left(\frac{\omega_n s}{c}\right) \exp\left(-\frac{s}{c\tau_n}\right)$$

т	f (MHz)	$\mathrm{R}^{(\mathrm{m})}/\mathrm{Q}$ ($\Omega ext{-m}^{2m}$)	Q tot	Bunch spacing	1000.00 <i>ns</i>
0	3900.00	0.000E+00	6.54E+09	Bunch charge	1.00E-09 <i>Coulomb</i>
0	7506.00	2.322E+01	5.05E+09	Bunch length	1 <i>ps</i>
1	4834.00	5.070E+05	5.47E+09	$E_{ m REAM}$	130 <i>MeV</i>
1	5443.00	2.090E+05	7.23E+09	$B (3 \circ GH_7)$	20 0 $n \Omega$
1	7669.00	2.950E+05	4.84E+09	$\Pi_{BCS}(0.90112)$	
2	9133.00	1.119E+09	3.11E+09	$R_0(3.9GHz)$	$20.0 n \Omega$
				Beam offset	1 <i>mm</i>

Easy to repeat with different values...

Calculation Result

If monopole at 7506MHz lands on resonance and is not damped, beam energy changes ~800keV (for a single 9-cell)

Excel/VBA code - runs reasonably quickly

Calculation Result

For dipole modes worst case is $f_{cavity} \sim 468 Hz$ off (integer) f_{beam}

Here is that case for 4834MHz mode, 1 cavity

There is also crabbing - the angular deflection 1σ in front of bunch center \neq deflection at bunch center

Calculation Result

5443MHz mode

7669MHz mode

Same shape, scaled (almost) by R/Q

9133GHz m=2 mode smaller

Calculation

1) Note that with intrinsic damping only, decay time of the beam-excited modes is $\mathcal{O}[1/3sec]$ and for rep rates over a Hz or so, there will still be fields left in the cavities from earlier trains

2) I've started to look at the typical, rather than the worst case - not really ready to show it

The numbers are typically much smaller, however... I believe that for a critical subsystem that contains a small number of components, worstcase analysis rather than typical-case analysis is appropriate.

A detailed report of the 3rd Harmonic coupler redesign was given by N. Solyak for the whole 3rd Harmonic team at the KEK meeting of the TTC in Sept 25-28th 2006

https://indico.desy.de/conferenceDisplay.py?confId=92

(scroll down to find his talk / Tuesday at 16:35)

From the relative field levels in $\pi/9$ vs π modes and observed temperature spikes, it is clear that we are quenching in the HOM coupler at 12-14 MV/m.

We have a simulation that says that multipacting should happen at about this level

MP in current HOM design at F=3.9GHz

Results of vertical test MP observed at Eacc~0.7MV/m (Q drop). Quench at Eacc~14MV/m. Second resonance frequency of HOM was tuned higher than designed value.

Almost all ways of heating the formteil cause large stresses in the same place, for the same reason - and this is where we saw fractures in cavity 2.

3-pronged attack on the problem

 a cut here should reduce fields in multipacting area by a factor of 2 - moving the barrier out of way

Can be applied retroactively

Cavity 4 now in fabrication at JLab with this modification

 a less-sharp dogleg and rounded end at the tuning notch, combined with thicker material should be more robust

3) a single, straight-legged design which should have low fields; like
(2) has 2.5mm tuning gap - less sensitive

credit: T.Khabibouline

- 1-post and new 2-post prototypes were built in Cu and tested
- Weld tests are now underway in Nb
- We have 9 pick-up antennas from one vendor - 3 need rework
- 3 pick-up antennas from a 2nd vendor for evaluation due any day now
- Horizontal test stand, mockup ass'y of cold mass on track for this spring.

Conclusion

- If you run a 3rd Harmonic cavity without dampers, you *could* see
 - $\Delta E \sim 800 \text{keV}$ $\Delta \Theta \sim 0.7 \text{mrad}$ $\Theta_{\text{CRAB}} \sim 12 \text{mrad}$
- This does not allow for high rep-rate effects
- We have a consistent & likely explanation for the failure of the HOM coupler, and are implementing several proposed fixes