HOM BPM Signal Processing with FPGA Based Digitizers

Nathan Eddy Fermilab HOM Workshop 1/23/07

Determine HOM Mode Amplitudes

- Want to determine the amplitude & phase of of the degenerate dipole modes
- SVD provides orthogonal vectors...
- By hand can generate sin & cos vectors

HOM BPM Details

DESY System

- Need to read out raw data for mod*cav*coupler channels at 4k to 10k data points per for multibunch then perform dot products to determine mode amplitudes
- This requires a lot of I/O in the front-end (slow) and then a bunch multiply accumulates which must be done sequentially on the frontend processor
- The current system is unable to report a position for every pulse at 5Hz for single bunch even with only a few cavities per module enabled

Custom FPGA Based Board

- Extreme flexibility inherent in FPGA
 - Algorithms and functionality can be changed and updated as needed
 - Code base which can be used for multiple projects
 - Intellectual Property (IP) cores provide off the shelf solutions for many interfaces and DSP applications
- The speed of parallel processing
 - Can perform up to 512 multiplies using dedicated blocks
- The Pipeline nature of FPGA logic is able to satisfy rigorous and well defined timing requirements

Dot Product FPGA Implementation

- Store mode vectors in FPGA RAM
- Perform dot product (multiply accumulate) in FPGA for digitized data as it arrives from ADC
- Simply read out mode amplitudes which are available as soon as data has arrived
- Can perform calculation on all channels in parallel
- Also able to store raw data in internal RAM

Dedicated HOM BPM Digitizer

- Dedicated HOM Digitizer
 - Provide amplitudes in real time
 - Reduce front-end processor I/O and load by orders 3-4 orders of magnitude
 - Provide bunch by bunch data for every pulse
- Design dedicated 8 channel digitizer
 - Modify existing design ~ 6 months
 - Commissioning time (have prototype already)
 - Conservative estimate of \$200 per channel
- Commercial Solutions
 - Need access to FPGA configuration (can be tricky)
 - Have them developed needed firmware (expensive)