AT

Karlsruher Institut far Technologie

Combinatorial Kalman Filter
Tracking Meeting.
Nils Braun | 28.04.2017

IEKP - KIT

http://www.kit.edu

Motivation A“(IT
CKF

A Combinatorial Kalman Filter uses the principles of the Kalman Filter for
track finding. Starting with a seed, it adds hits with some kind of Monte
Carlo Tree Search algorithm.

First implementation: extrapolate from CDC to VXD (SVD).

a Reduction of fakes
@ Reduction of SpacePoint combinations
m Increased finding efficiency

Primary

All MC tracks 10325
MC track has VXD hits Yes No
10241 84
VXD part was found No No
1901 84
MC track has CDC hits Yes No Yes [No Yes
7955 385 1622 279 84

CDC part was found

Merging

VXDTF i CDCTF
Must help Criteria? Must help

Efficiency CKF Criteria? CKF Very bad!

Combinatorial Kalman Filter - Nils Braun 28.04.2017 2111

Problems/Challenges A\K"

a Extrapolation is slooooow...
® In a normal event, there are more than 108 possible combinations.

a You really have to care on memory layout, copying/duplications, fast
access of hits etc.

Combinatorial Kalman Filter - Nils Braun 28.04.2017 3/11

Implementation: Data Flow A\K“‘

m RecoTracks are fetched from store array, only successfully fitted
ones are used.

SpacePoints are fetched from store array; sorted by layer, ladder,
sensor; iterators of start and end of a layer are stored for caching.

For each RecoTrack as seed: do tree search

S , e e it s

Write back to another store array.
Validation

Combinatorial Kalman Filter - Nils Braun 28.04.2017 4/11

Tree Search

Seed

6 Ov

Combinatorial Kalman Filter -

Nils Braun

28.04.2017

5/11

TreeSearch implementation &‘("

traverseTree (Statelterator currentState,
std::vector<ResultPair>& resultsVector)

Statelterator nextState = std::next(currentState);
(nextState == m_states.end()) {
resultsVector.emplace_back(currentState->finalize ());

>

& matchingHits = getMatchingHits (currentState);
(& hit : matchingHits) {
*nextState = AStateObject (currentState, hit);
(useResult (nextState)) {
traverseTree (nextState, resultsVector);

}

*nextState = AStateObject (currentState, nullptr);
(useResult (nextState)) {
traverseTree (nextState, resultsVector);

}

Combinatorial Kalman Filter - Nils Braun 28.04.2017 6/11

State Object %("'

er Institut o Technologie

RecoTrack* m_seedRecoTrack = nullptr;
SpacePoint* m_spacePoint = nullptr;
m_number = N;

CKFCDCToVXDStateObject* m_parent = nullptr;
m_chi2 = 0;

m_isFitted = 5
m_isAdvanced = ;

genfit::MeasuredStateOnPlane m_measuredStateOnPlane;

m_hasCache = H
genfit::MeasuredStateOnPlane m_cachedMeasuredStateOnPlane;

Combinatorial Kalman Filter - Nils Braun 28.04.2017 7M1

useResult A\‘(IT

useResult (Statelterator currentState)

{
Weight weight = m_firstFilter (xcurrentState);
(std::isnan(weight)) {
}
(advance (currentState)) {
}
weight = m_secondFilter (*currentState);
(std::isnan(weight)) {
}
(fit (currentState)) {
}
weight = m_thirdFilter (xcurrentState);
std::isnan(weight);
}

Combinatorial Kalman Filter - Nils Braun 28.04.2017 8/11

Next steps A\KIT

a Remove the state constructors (again).

a Refine the geometry overlap handling (fix bug; no need for fit and
advance, no need for state?).

a Implement the quality estimation and the final selection (reuse VXD
code).

a Present first (physical) results on F2F meeting.

Combinatorial Kalman Filter - Nils Braun 28.04.2017 911

Backup

Principles A\KIT

Combinatorial Kalman Filter - Nils Braun 28.04.2017 1111

Principles A\KIT

Combinatorial Kalman Filter - Nils Braun 28.04.2017 11/11

Principles A\KIT

Combinatorial Kalman Filter - Nils Braun 28.04.2017 11/11

Principles A\KIT

Combinatorial Kalman Filter - Nils Braun 28.04.2017 11/11

Principles A\KIT

Combinatorial Kalman Filter - Nils Braun 28.04.2017 11/11

