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Motivation A“(IT
CKF

A Combinatorial Kalman Filter uses the principles of the Kalman Filter for
track finding. Starting with a seed, it adds hits with some kind of Monte
Carlo Tree Search algorithm.

First implementation: extrapolate from CDC to VXD (SVD).

a Reduction of fakes
@ Reduction of SpacePoint combinations
m Increased finding efficiency

Primary

All MC tracks 10325
MC track has VXD hits Yes No
10241 84
VXD part was found No No
1901 84
MC track has CDC hits Yes No Yes [ No Yes
7955 385 1622 279 84

CDC part was found

Merging

VXDTF i CDCTF
Must help Criteria? Must help

Efficiency CKF Criteria? CKF Very bad!
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Problems/Challenges A\K"

a Extrapolation is slooooow...
® In a normal event, there are more than 108 possible combinations.

a You really have to care on memory layout, copying/duplications, fast
access of hits etc.
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Implementation: Data Flow A\K“‘

m RecoTracks are fetched from store array, only successfully fitted
ones are used.

SpacePoints are fetched from store array; sorted by layer, ladder,
sensor; iterators of start and end of a layer are stored for caching.

For each RecoTrack as seed: do tree search

S , e e it s

Write back to another store array.
Validation
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Tree Search

Seed

6 Ov
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TreeSearch implementation &‘("

traverseTree (Statelterator currentState,
std::vector<ResultPair>& resultsVector)

Statelterator nextState = std::next(currentState);
(nextState == m_states.end()) {
resultsVector.emplace_back(currentState->finalize ());

>

& matchingHits = getMatchingHits (currentState);
( & hit : matchingHits) {
*nextState = AStateObject (currentState, hit);
(useResult (nextState)) {
traverseTree (nextState, resultsVector);

}

*nextState = AStateObject (currentState, nullptr);
(useResult (nextState)) {
traverseTree (nextState, resultsVector);

}
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State Object %("'

er Institut o Technologie

RecoTrack* m_seedRecoTrack = nullptr;
SpacePoint* m_spacePoint = nullptr;
m_number = N;

CKFCDCToVXDStateObject* m_parent = nullptr;
m_chi2 = 0;

m_isFitted = 5
m_isAdvanced = ;

genfit::MeasuredStateOnPlane m_measuredStateOnPlane;

m_hasCache = H
genfit::MeasuredStateOnPlane m_cachedMeasuredStateOnPlane;
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useResult A\‘(IT

useResult (Statelterator currentState)

{
Weight weight = m_firstFilter (xcurrentState);
(std::isnan(weight)) {
}
( advance (currentState)) {
}
weight = m_secondFilter (*currentState);
(std::isnan(weight)) {
}
( fit (currentState)) {
}
weight = m_thirdFilter (xcurrentState);
std::isnan(weight);
}
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Next steps A\KIT

a Remove the state constructors (again).

a Refine the geometry overlap handling (fix bug; no need for fit and
advance, no need for state?).

a Implement the quality estimation and the final selection (reuse VXD
code).

a Present first (physical) results on F2F meeting.
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