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Collider Physics

Multiple scales

– Hard collision  

– Proton structure            
(non-perturbative long 
distance physics)

– Collinear & soft radiation

All LHC calculations rely on 
the factorization

I want to focus on the partonic cross section.
(Hard scattering, jet algorithm, parton shower, hadronisation model)  

Parton distribution 
functions (PDFs)
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Partonic cross section

For the partonic cross section we can use perturbative QCD
 

Theoretical Uncertainty:

● Series is truncated and                         is not that small 

● Estimate of higher orders through scale variation 

(renormalization/factorization scale)

● Systematically improvable by adding higher orders

● Improvable by resumming large logs (not this talk)

NLO QCD is currently state of the art



4

Motivation for NNLO 

● Precise predictions needed for

– Strong coupling constant (                      )

– PDF (dijet cross section for gluon PDF)

– For various processes:
● NLO correction large (e.g. Higgs at hadron colliders)
● Uncertainty bands large at NLO
● New channels can appear at NNLO
● NLO effectively LO

e.g. jet structures like energy distribution in jet cone

● LHC run II: Experimental precision challenges theory
– Z production lepton pair pT spectrum error < 1% 

– A lot of beyond NLO @ QCD (not yet beyond SM) 

→ NNLO should become standard
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Motivation for NNLO

● NLO effectively LO e.g. opening angle in diphoton 
– At LO back to back, distribution starts at NLO

– New channel opens at NNLO

large discrepancy 
between NLO and data

Catani et al. 1110.2375
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NLO Revolution 

● NLO calculations have progressed significantly around 
2010 (+automation) from Gavin Salam's talk 2012 

Where are we concerning NNLO?
What are the new challenges?
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NLO Revolution 

● NLO calculations have progressed significantly around 
2010 (+automation) from Gavin Salam's talk 2012 

Let's first understand NLO!
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QCD at higher orders

At higher order IR divergences appear. Simple example

  

 

real virtual 

NLO LO 

Explicit divergences from loop integral Soft & Collinear divergence 
from unresolved radiation. 
Implicit divergences in phase 
space.

Sum is finite for IR safe observable… but in the presence of phase space 
singularities 4 dim. Monte Carlo integration not possible.  
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QCD @ NLO

IR divergences in 

LO NLO 

Implicit IR divergences Explicit IR divergences  

 

real virtual 

N-parton Born phase space
 

N-parton matrix element
(squared)

 

Born level cuts (jet definition, 
rapidity and lepton cuts,...)

 

Implicit divergence in real are problematic since we would like to use 
numerical integration methods → subtractions

Generic N-jet cross section:
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NLO Subtraction

Add and subtract a term: 

reshuffle:
1/ε cancellation 

Numerically integrable in d=4
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NLO Subtraction
1/ε cancellation 

Numerically integrable in d=4

● reproduces all IR singular limits of real emission                   
(@NLO: one soft + one collinear divergence)

● Need to be able to integrate the subtractions analytically in 
d=4-2ε.

Subtraction term

This is a LOCAL subtraction scheme (match IR point-by-point in 
phase space)
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NLO Subtraction
1/ε cancellation 

Numerically integrable in d=4

[Catani, Seymour 1996]
 

@NLO: Has been solved generically (observable independent)

● Unique procedure 

● Dipole subtraction

● FKS subtraction 

– Used in aMC@NLO

[Frixione, Kunszt, Signer 1996] 

universal factor
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QCD @ NNLO

Virtual-Virtual
  

Real-Virtual Real-Real

Explicit poles from loop.

Two loop amplitudes are far 
from automation and only a 
limited set is known. 

Explicit IR poles from
loop and implicit soft 
and collinear 
divergences from the 
emission 

Double unresolved 
radiation
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QCD @ NNLO

Virtual-Virtual
  

Real-Virtual
 

Real-Real
 

 

For a local subtraction method proceed as in NLO

– Major difficulty: singular limits of the real-real radiation

overlapping and nested singularities

– Built up from scratch, difficult to recycle known NLO results

Need systematic technique to handle singularities   
(no general NNLO IR cancellation scheme yet)

Despite challenges various schemes on the market
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Local Subtractions at NNLO

● Sector decomposition

– Higgs, W, Z (2005, 2006) 

● Antenna Subtraction 

● STRIPPER, Residue Subtraction

● CoLorFulNNLO

● Projection to Born  

[Gehrmann, Glover et al; Weinzierl, 2005] 

[Czakon, Mitov, Binoth, Heinrich 2000]
[Anastasiou, Melnikov, Petriello 2004] 

[Czakon 2010]
[Boughezal, Melnikov, Petriello 2011] 

[Del Duca, Somogyi, Trocsanyi 2005] 

Every scheme has advantages and disadvantages

Analytic FS color IS color Azimuthal Approach

Antenna ☺ ☺ ☺ x Subtraction

STRIPPER x ☺ ☺ ☺ Subtraction

Colorful ☺ ☺ x ☺ Subtraction

P2B ☺ ☺ ☺ - Subtraction

qT ☺ x ☺ - Global (slicing)

N-Jettiness ☺ ☺ ☺ - Global (slicing)

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi 2015] 
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Global Subtractions 

● qT subtraction 

– Only for color-single final state

– Successfully applied to essentially all diboson processes

● N-jettiness

– More generic than qT, catches all IR behaviors also for jet 
processes (universal). 

● Possible to recycle existing NLO and resummation tools 

– Singular limit well studied (resummation in limits where large logs 
spoil convergence) → use known factorization theorems

– Systematically organizes calculation (poles)

Examples of global subtraction schemes (slicing)

[Catani, Grazzini 2007] 

[Stewart, Tackmann, Waalewijn 2010; Gaunt, Stahlhofen, Tackmann, Walsh 2015]
[Boughezal, Focke, Liu, Petriello 2015]  

Advantages (to local subtraction schemes)

Responsible for significant recent progress (Dibosons, Boson+Jet)
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Global Subtractions 

● Phase Space slicing:

Split into two regions

– NLO for Born +1 jet

– free of singularities

– Resolved & single 
unresolved of RV & RR

– Numerically integrable

– Singular NNLO piece

– No additional radiation resolved

– VV & double unresolved limit     
of RV & RR

Born-level cuts and
measurements

 

● Resolution parameter (here     )
– Physical IR safe variable and analytically integrable for 
– must separate double unresolved limit from NLO singular limits. 
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Global Subtractions 

 

●   

– Must reproduce singular limit

– The cut must be sufficiently small to be able to neglect
● However, N+1-jet NLO quickly becomes much less stable 

(computational cost increases substantially) 

– Must be explicitly calculable 
● Just take singular limit of cross section for small

Subtraction such that analytic integration is possible:
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Global Subtractions 

● Recycle existing NLO and resummation tools 

– Singular limit well studies (resummation in limits where large logs 
spoil convergence)

– Use known factorization theorems

– Neglected contribution is of
● However suppression weakens with higher order due to 

logarithmic enhancement    
● Improvement by adding power corrections  (this talk, later)

Subtraction such that analytic integration is possible:
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Global Subtractions 
● qT subtraction: 

– Resolution variable: boson transverse momentum qT

– Successfully applied to essentially all diboson processes

– Only for color-single final state:
● Does not resolve double unresolved from NLO singular limit

● N-Jettiness

– More generic variable than qT, catches all IR behaviors also for jet 
processes (universal).

– All ingredients for NNLO of most V+1 jet processes available.

[Catani, Grazzini 2007] 

Same qT 
 

[Stewart, Tackmann, Waalewijn 2010; Gaunt, Stahlhofen, Tackmann, Walsh 2015]
[Boughezal, Focke, Liu, Petriello 2015] 
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N-Jettiness Definition
● Event shape defined for N-jet observables

● Construct qi by using IR safe jet algorithm 

N+2 massless jet axes (two beams for 
hadron colliders) 

Final-state partons

Normalization factor
e.g. 

Radiation soft or collinear +1 additional jet (radiation is resolved) 
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N-jettiness Subtractions

● Need the singular piece! Use factorization formula for                        
N-jettiness from SCET!

● Each function IR finite (operator definition in SCET)

● To obtain the fixed order singular piece just expand and collect terms

– For NNLO each ingredient at two loops needed

– Last years: essentially all ingredients for 2→2 at LHC available!

[Stewart, Tackmann, Waalewijn 2010] 

Beam functions 
collinear ISR 

Hard Wilson coefficient
2-loop virtual 

(color space matrices) 

Jet functions 

Soft function 
describes soft radiation
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Factorization Formula for N-jettiness

Ingredients at fixed order NNLO 

– Hard function  
● Only process dependent piece 

– Some known, many not

– Beam functions
● Universal for any N (depends only on parton flavor)
● Requires matching onto PDFs

– Jet functions  

– Soft function (generally color space matrix) 
● 2 partons: 
● 3 partons: pp→V+1 jet 
● Unknown for general N

NLO: [Stewart, Tackmann, Waalewijn 2009, 2010]
NNLO: [Gaunt, Stahlhofen, Tackmann 2014] 

W/H+jet: [Gehrmann, Tancredi; + Jaquier, Glover, Koukoutsakis 2011] 

NNLO: [Becher, Neubert 2006; Becher, Bell 2010] 

[Kelley, Schartz, Schabinger, Zhu 2011; Monni, Gehrmann, Luisoni 2011]
[Hornig, Lee, Walsh, Zuberi 2011; Kang, Labun, Lee 2015] 

[Boughezal, Liu, Petriello 2015] 
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