AKK update: AKK08 fragmentation functions

FFs at large x

Simon Albino

¹II. Institute of Theoretical Physics, University of Hamburg

May 22, 2009

Outline

- Single hadron inclusive production and pQCD
 - Introduction
 - Measurements of single hadron inclusive production
 - Outline of factorization
- FFs at large x
 - Cross section in the fixed order approach
 - Global fits
 - Predictions using FFs from e⁺e⁻
 - Theoretical improvements
 - Latest global fit: AKK08 (Nucl. Phys. B)
- 3 Improving the small x region
 - Soft gluon logarithms in splitting functions
 - Unified approach
 - Fits to data

0000

Single hadron inclusive production and pQCD

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$

Single hadron inclusive production and pQCD

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$

(Initial states "?":
$$e^+e^-$$
, γ^*p , pp)

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

h: detected hadron

Single hadron inclusive production and pQCD

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

h: detected hadron

Single hadron inclusive production and pQCD

x: fraction of the process's available energy / momentum taken away by h

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

h: detected hadron

Single hadron inclusive production and pQCD

• x: fraction of the process's available energy / momentum taken away by h

Improving the small x region

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

- h: detected hadron
- x: fraction of the process's available energy / momentum taken away by h
- E_S : energy scale of process

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

- h: detected hadron
- x: fraction of the process's available energy / momentum taken away by h
- E_S: energy scale of process

Parton (quark/gluon) fragmentation "model" from probability:

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$
(Initial states "?": e^+e^- , γ^*p , pp)

- h: detected hadron
- x: fraction of the process's available energy / momentum taken away by h
- E_S: energy scale of process

final state

Parton (quark/gluon) fragmentation "model" from probability:

$$XS(? \rightarrow h + X) = XS(? \rightarrow i + X) \times FF(i \rightarrow h + X)$$

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$

(Initial states "?":
$$e^+e^-$$
, γ^*p , pp)

- h: detected hadron
- x: fraction of the process's available energy / momentum taken away by h
- E_S: energy scale of process

final state

Parton (quark/gluon) fragmentation "model" from probability:

$$XS(? \rightarrow h + X) = XS(? \rightarrow i + X) \times FF(i \rightarrow h + X)$$

FFs: probability for parton *i* to *fragment* to *h*

General cross section and parton fragmentation

?
$$\rightarrow h + X$$
 ($X = \text{anything}$) takes the form $\frac{d\sigma^h}{dx}(x, E_S^2)$

(Initial states "?":
$$e^+e^-$$
, γ^*p , pp)

- h: detected hadron
- x: fraction of the process's available energy / momentum taken away by h
 Fo: energy scale of process
- E_S : energy scale of process

final state

Parton (quark/gluon) fragmentation "model" from probability:

$$XS(? \rightarrow h + X) = XS(? \rightarrow i + X) \times FF(i \rightarrow h + X)$$

FFs: probability for parton *i* to *fragment* to *h*

XS(?
$$\rightarrow$$
 i + *X*): partonic final state, pQCD at high E_S \rightarrow series in QCD coupling $a_s(E_S) \sim \frac{1}{\ln E_S/\Lambda_{\rm QCD}}$

Measurements of single hadron inclusive production

$$e^+e^- \rightarrow h + X$$

Measurements of single hadron inclusive production

Measurements from several processes

$$e^+e^- \rightarrow h + X$$

• ALEPH, DELPHI, TASSO, OPAL, ... — many data points

Measurements of single hadron inclusive production

$$e^+e^-
ightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

Measurements of single hadron inclusive production

$$e^+e^-
ightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \to h + X$$

Measurements of single hadron inclusive production

Measurements from several processes
$$e^+e^-
ightarrow h+X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

• $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$

Single hadron inclusive production and pQCD

$$e^+e^- \rightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA

$$e^+e^- o h+X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5 2.5 \text{ pb}^{-1} (1993,1994)$, theory $\leftrightarrow \exp$

$$e^+e^- \rightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5 2.5 \text{ pb}^{-1} (1993,1994)$, theory $\leftrightarrow \exp$
 - $\mathcal{L} = 0.5 \text{ fb}^{-1}$ (1996-2007), theory $\leftrightarrow \exp$

$$e^+e^-
ightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5$ 2.5 pb⁻¹ (1993,1994), theory \leftrightarrow exp
 - $\mathcal{L}=$ 0.5 fb $^{-1}$ (1996-2007), theory \leftrightarrow exp

$$pp(\bar{p}) \rightarrow h + X$$

Measurements from several processes

$$e^+e^- \rightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5$ 2.5 pb⁻¹ (1993,1994), theory \leftrightarrow exp
 - $\mathcal{L} = 0.5 \text{ fb}^{-1}$ (1996-2007), theory \leftrightarrow exp

$$pp(\bar{p}) \rightarrow h + X$$

• CDF (2005) @ Tevatron ($p\bar{p}, \sqrt{s}=630,1800$ GeV) no norm \rightarrow FF shape

$$e^+e^- \rightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5$ 2.5 pb⁻¹ (1993,1994), theory \leftrightarrow exp
 - $\mathcal{L}=0.5~\text{fb}^{-1}$ (1996-2007), theory \leftrightarrow exp

$$pp(\bar{p}) \rightarrow h + X$$

- CDF (2005) @ Tevatron ($p\bar{p}, \sqrt{s}=630,1800$ GeV) no norm \rightarrow FF shape
- BRAHMS, PHENIX, STAR (2006,2007) @ RHIC (pp, $\sqrt{s} = 200$ GeV) \rightarrow remaining FFs (gluon, valence quark, . . .)

Measurements of single hadron inclusive production

$$e^+e^-
ightarrow h + X$$

- ALEPH, DELPHI, TASSO, OPAL, ... many data points
- Most precise data for (charge-summed) FF extraction

$$\gamma^* p \rightarrow h + X$$

- $\sim PDFs \times e^+e^- \rightarrow h + X \rightarrow \text{different FF flavour weighting}$
- H1+ZEUS@HERA
 - $\mathcal{L} = 0.5 2.5 \text{ pb}^{-1} (1993,1994)$, theory $\leftrightarrow \exp$
 - $\mathcal{L} = 0.5 \text{ fb}^{-1}$ (1996-2007), theory $\leftrightarrow \exp$

$$pp(\bar{p}) \rightarrow h + X$$

- CDF (2005) @ Tevatron $(p\bar{p}, \sqrt{s} = 630, 1800 \text{ GeV})$ no norm \rightarrow FF shape
- BRAHMS, PHENIX, STAR (2006,2007) @ RHIC (pp, $\sqrt{s} = 200 \text{ GeV}$) \rightarrow remaining FFs (gluon, valence quark, ...)
- LHC (pp. $\sqrt{s} = 14$ TeV)

Outline of factorization

Factorize into hard + soft

• Emerging picture:

• Purpose:

Outline of factorization

Factorize into hard + soft

• Emerging picture:

$$d\sigma^h(E_S) = d\sigma_{q,g}(E_S, M_f) \otimes D_{q,g}^h(M_f)$$

($\otimes \equiv$ sum over partons, spin, integral over momentum etc.)

• Purpose:

Outline of factorization

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard"}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft"}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:

Outline of factorization

0000

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft"}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:

Outline of factorization

Factorize into hard + soft

Emerging picture:

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:

0000

Factorize into hard + soft

• Emerging picture:

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_s -series for $d\sigma_{q,g}$

Outline of factorization

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_s -series for $d\sigma_{q,g}$
 - processes $< O(M_f)$ into FFs (so choose $M_f = O(E_S)$)

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_s -series for $d\sigma_{a,\sigma}$
 - processes $< O(M_f)$ into FFs (so choose $M_f = O(E_S)$)

Allows for perturbative calculations dependent on initial state:

$$d\sigma_{q,g}(E_S, M_f) = \sum_n a_s^n(M_f) d\sigma_{q,g}^{(n)}(E_S, M_f)$$

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_S -series for $d\sigma_{a,g}$
 - processes $< O(M_f)$ into FFs (so choose $M_f = O(E_S)$)

Allows for perturbative calculations dependent on initial state:

$$d\sigma_{q,g}(E_S, M_f) = \sum_n a_s^n(M_f) d\sigma_{q,g}^{(n)}(E_S, M_f)$$

• M_f dependence of FFs also perturbative \rightarrow DGLAP: $\frac{d}{d\log M_f}D_{a,\sigma}^h(M_f) = P_{a,\sigma-a,\sigma}(a_s(M_f)) \otimes D_{a,\sigma}^h(M_f)$

Factorize into hard + soft

• Emerging picture:

Single hadron inclusive production and pQCD

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_S -series for $d\sigma_{a,g}$
 - processes $< O(M_f)$ into FFs (so choose $M_f = O(E_S)$)

Allows for perturbative calculations dependent on initial state:

$$d\sigma_{q,g}(E_S, M_f) = \sum_n a_s^n(M_f) d\sigma_{q,g}^{(n)}(E_S, M_f)$$

• M_f dependence of FFs also perturbative \rightarrow DGLAP: $\frac{d}{d \ln M_c} D_{q,\sigma}^h(M_f) = P_{q,g-q,g}(a_s(M_f)) \otimes D_{q,\sigma}^h(M_f)$

where
$$P(a_s) = \sum_n a_s^n P^{(n-1)}$$
 calculable

Factorize into hard + soft

• Emerging picture:

$$d\sigma^h(E_S) = \underbrace{d\sigma_{q,g}(E_S, M_f)}_{\text{"hard": pQCD, PDFs}} \otimes \underbrace{D_{q,g}^h(M_f)}_{\text{"soft": FFs}}$$

- $(\otimes \equiv \text{sum over partons, spin, integral over momentum etc.})$
- Purpose:
 - processes $< O(E_S)$ spoil a_s -series for $d\sigma_{q,g}$
 - processes $< O(M_f)$ into FFs (so choose $M_f = O(E_S)$)

Allows for perturbative calculations dependent on initial state:

$$d\sigma_{q,g}(E_S, M_f) = \sum_n a_s^n(M_f) d\sigma_{q,g}^{(n)}(E_S, M_f)$$

• M_f dependence of FFs also perturbative \to DGLAP: $\frac{d}{d \ln M_f} D_{q,g}^h(M_f) = P_{q,g} Q_{q,g}(a_s(M_f)) \otimes D_{q,g}^h(M_f)$

where
$$P(a_s) = \sum_n a_s^n P^{(n-1)}$$
 calculable

• FFs at $M_f = M_0$ from exp, then this approach predicts any XS

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D_{q,g}^h$

$$d\sigma^h(x, E_S) = \sum_i \int_x^1 dz \ d\sigma_i \left(\frac{x}{z}, E_S, M_f\right) D_i^h(z, M_f)$$

0000

Single hadron inclusive production and pQCD

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D_{q,g}^h$

$$d\sigma^h(x, E_S) = \sum_i \int_x^1 dz \ d\sigma_i \left(\frac{x}{z}, E_S, M_f\right) D_i^h(z, M_f)$$

x = produced hadron momentum / available momentumz = produced hadron momentum / fragmenting parton momentum

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{f}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{f}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

x =produced hadron momentum / available momentum z =produced hadron momentum / fragmenting parton momentum

 \sim inclusive hadron-initiated process (PDF convolution)

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{f}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

x =produced hadron momentum / available momentum z =produced hadron momentum / fragmenting parton momentum

 \sim inclusive hadron-initiated process (PDF convolution) \longrightarrow PDF evolution techniques can be used:

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{\varepsilon}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

- \sim inclusive hadron-initiated process (PDF convolution)
- → PDF evolution techniques can be used:
 - Parameterize FFs at $M_f = M_0$, $D_i^h(z, M_0^2) = N_i z^{\alpha_i} (1-z)^{\beta_i}$

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{\varepsilon}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

- \sim inclusive hadron-initiated process (PDF convolution)
- → PDF evolution techniques can be used:
 - Parameterize FFs at $M_f = M_0$, $D_i^h(z, M_0^2) = N_i z^{\alpha_i} (1-z)^{\beta_i}$
 - Solve DGLAP in Mellin space $D^h(\omega, M_f^2) = \int_0^1 dz z^\omega D^h(z, M_f^2)$ convolution $\otimes \to \text{product } \times$:

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{f}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

- \sim inclusive hadron-initiated process (PDF convolution)
- → PDF evolution techniques can be used:
 - Parameterize FFs at $M_f = M_0$, $D_i^h(z, M_0^2) = N_i z^{\alpha_i} (1-z)^{\beta_i}$
 - Solve DGLAP in Mellin space $D^h(\omega, M_f^2) = \int_0^1 dz z^\omega D^h(z, M_f^2)$ convolution $\otimes \to \operatorname{product} \times$: $\frac{d}{d \ln M_f^2} D_i^h(\omega, M_f^2) = P_{ij} \left(\omega, a_s(M_f^2) \right) D_j^h(\omega, M_f^2)$ gives $D_i^h(\omega, M_f^2) = E_{ij}(\omega, a_s(M_f^2), a_s(M_0^2)) D_i^h(\omega, M_0^2)$

Convolution
$$\otimes$$
 in $d\sigma^h = d\sigma_{q,g} \otimes D^h_{q,g}$, $\frac{d}{d \ln M_f} D^h_{q,g} = P_{q,gq,g} \otimes D^h_{q,g}$

$$d\sigma^{h}(x, E_{S}) = \sum_{i} \int_{x}^{1} dz \ d\sigma_{i} \left(\frac{x}{z}, E_{S}, M_{f}\right) D_{i}^{h}(z, M_{f})$$

$$\frac{d}{d \ln M_{f}^{2}} D_{i}^{h}(z, M_{f}^{2}) = \sum_{j} \int_{z}^{1} \frac{dz'}{z'} P_{ij} \left(\frac{z}{z'}, a_{s}(M_{f}^{2})\right) D_{j}^{h}(z', M_{f}^{2})$$

x = produced hadron momentum / available momentumz = produced hadron momentum / fragmenting parton momentum

- \sim inclusive hadron-initiated process (PDF convolution)
- → PDF evolution techniques can be used:
 - Parameterize FFs at $M_f=M_0$, $D_i^h(z,M_0^2)=N_iz^{\alpha_i}(1-z)^{\beta_i}$
 - Solve DGLAP in Mellin space $D^h(\omega, M_f^2) = \int_0^1 dz z^\omega D^h(z, M_f^2)$ convolution $\otimes \to \operatorname{product} \times$: $\frac{d}{d \ln M_f^2} D_i^h(\omega, M_f^2) = P_{ij} \left(\omega, a_s(M_f^2) \right) D_j^h(\omega, M_f^2)$ gives $D_i^h(\omega, M_f^2) = E_{ij}(\omega, a_s(M_f^2), a_s(M_0^2)) D_i^h(\omega, M_0^2)$
 - $d\sigma^h(\omega, E_S) = d\sigma_i(\omega, E_S, M_f)D_i^h(\omega, M_f^2)$

Outline

- Single hadron inclusive production and pQCD
 - Introduction
 - Measurements of single hadron inclusive production
 - Outline of factorization
- FFs at large x
 - Cross section in the fixed order approach
 - Global fits
 - Predictions using FFs from e⁺e⁻
 - Theoretical improvements
 - Latest global fit: AKK08 (Nucl. Phys. B)
- Improving the small x region
 - Soft gluon logarithms in splitting functions
 - Unified approach
 - Fits to data

Cross section in the fixed order approach

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \quad (M_f = O(E_S) \text{ fixed})$$

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n (E_S) d\sigma_i^{(n)}(\omega) \quad (M_f = O(E_S) \text{ fixed})$$

• Works well for sufficiently large $x \equiv \text{large } \omega$

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n (E_S) d\sigma_i^{(n)}(\omega) \quad (M_f = O(E_S) \text{ fixed})$$

• Works well for sufficiently large
$$x \equiv \text{large } \omega$$

Further improvement possible for very large x (see later)

Cross section in the fixed order approach

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$
$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n (E_S) d\sigma_i^{(n)}(\omega) \quad (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv \text{large } \omega$
- Further improvement possible for very large x (see later)
- ... and significantly so for small $x \equiv \text{small } \omega$ (see later)

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \ (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv \text{large } \omega$
- Further improvement possible for very large x (see later)
- ... and significantly so for small $x \equiv \text{small } \omega$ (see later)

Other corrections include $(E_S = \sqrt{s}, Q, ...)$

Cross section in the fixed order approach

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \ (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv \text{large } \omega$
- Further improvement possible for very large x (see later)
- ... and significantly so for small $x \equiv \text{small } \omega$ (see later)

Other corrections include $(E_S = \sqrt{s}, Q, ...)$

• hadron mass, $O\left(\frac{m_h^2}{E_c^2}\right)$ (later)

Cross section in the fixed order approach

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \ (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv \text{large } \omega$
- Further improvement possible for very large x (see later)
- ... and significantly so for small $x \equiv \text{small } \omega$ (see later)

Other corrections include $(E_S = \sqrt{s}, Q, ...)$

- hadron mass, $O\left(\frac{m_h^2}{E_c^2}\right)$ (later)
- quark mass, $O\left(\frac{m_q^2}{E_z^2}\right)$

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \ (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv \text{large } \omega$
- Further improvement possible for very large x (see later)
- ... and significantly so for small $x \equiv \text{small } \omega$ (see later)

Other corrections include $(E_S = \sqrt{s}, Q, ...)$

- hadron mass, $O\left(\frac{m_h^2}{E_c^2}\right)$ (later)
- quark mass, $O\left(\frac{m_q^2}{E_z^2}\right)$
- higher twist, $O\left(\frac{\Lambda_{\rm QCD}^p}{E_c^p}\right)$ (beyond factorization)

Basic approach

Fixed order pQCD

$$P(\omega, a_s) = \sum_{n=1}^{\infty} a_s^n P^{(n-1)}(\omega) = \underbrace{a_s P^{(0)}}_{\text{LO}} + \underbrace{a_s^2 P^{(1)}}_{\text{NLO}} + \dots$$

$$d\sigma_i(\omega, E_S) = \sum_{n=0}^{\infty} a_s^n(E_S) d\sigma_i^{(n)}(\omega) \ (M_f = O(E_S) \text{ fixed})$$

- Works well for sufficiently large $x \equiv$ large ω
- Further improvement possible for very large x (see later)
- ullet ... and significantly so for small $x\equiv$ small ω (see later)

Other corrections include ($E_S = \sqrt{s}, Q, ...$)

- hadron mass, $O\left(\frac{m_h^2}{E_S^2}\right)$ (later)
- quark mass, $O\left(\frac{m_q^2}{E_S^2}\right)$
- higher twist, $O\left(\frac{\Lambda_{\text{QCD}}^{p}}{E_{\text{S}}^{p}}\right)$ (beyond factorization)

small x

Global fits

Data

$$e^+e^-$$

$$pp(\bar{p})$$

Data

$$e^+e^-$$

• Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d)),$ neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d)),$ neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d)),$ neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91 \text{ GeV} \gg \Lambda_{\rm OCD} \simeq 0.2 \text{ GeV}$ (e.g. DELPHI, SLD)

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d))$, neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91 \text{ GeV} \gg \Lambda_{\rm OCD} \simeq 0.2 \text{ GeV}$ (e.g. DELPHI, SLD)
- some exp. constraints @ \sqrt{s} < 91 GeV (e.g. TPC @ 29 GeV)

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d))$, neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91$ GeV $\gg \Lambda_{\rm OCD} \simeq 0.2$ GeV (e.g. DELPHI, SLD)
- some exp. constraints @ \sqrt{s} < 91 GeV (e.g. TPC @ 29 GeV)
- (heavy) quark flavour tagging → flavour separation of FFs

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d))$, neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91$ GeV $\gg \Lambda_{\rm OCD} \simeq 0.2$ GeV (e.g. DELPHI, SLD)
- some exp. constraints @ \sqrt{s} < 91 GeV (e.g. TPC @ 29 GeV)
- (heavy) quark flavour tagging → flavour separation of FFs
- OPAL tagging probabilities separate light flavours

$$pp(\bar{p})$$

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d))$, neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91$ GeV $\gg \Lambda_{\rm OCD} \simeq 0.2$ GeV (e.g. DELPHI, SLD)
- some exp. constraints @ \sqrt{s} < 91 GeV (e.g. TPC @ 29 GeV)
- (heavy) quark flavour tagging → flavour separation of FFs
- OPAL tagging probabilities separate light flavours
- exclude $x \leq 0.05$ due to failure of FO series

$$pp(\bar{p})$$

Data

Single hadron inclusive production and pQCD

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d)),$ neutral strange $(K_s^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- much accurate data @ $\sqrt{s} = 91$ GeV $\gg \Lambda_{\rm OCD} \simeq 0.2$ GeV (e.g. DELPHI, SLD)
- some exp. constraints @ \sqrt{s} < 91 GeV (e.g. TPC @ 29 GeV)
- (heavy) quark flavour tagging → flavour separation of FFs
- OPAL tagging probabilities separate light flavours
- exclude $x \leq 0.05$ due to failure of FO series

$$pp(\bar{p})$$

BRAHMS, CDF, PHENIX, STAR

Data

$$e^+e^-$$

- Hadrons: Light charged $(\pi^{\pm}(u,d), K^{\pm}(u,s), p/\bar{p}(u,u,d))$, neutral strange $(K_S^0(d,s), \Lambda(u,d,s))$
- Σ Hadron (quark) spins, charge (h^+ , h^- not distinguished)
- ullet much accurate data @ $\sqrt{s}=91$ GeV $\gg \Lambda_{
 m QCD} \simeq 0.2$ GeV (e.g. DELPHI, SLD)
- ullet some exp. constraints \ullet $\sqrt{s} <$ 91 GeV (e.g. TPC \ullet 29 GeV)
- (heavy) quark flavour tagging → flavour separation of FFs
- OPAL tagging probabilities separate light flavours
- exclude $x \lesssim 0.05$ due to failure of FO series

$$pp(\bar{p})$$

- BRAHMS, CDF, PHENIX, STAR
- h^+ , h^- separately

Quality of fits

From Albino-Kniehl-Kramer (AKK) fit of 2005 (no unidentified particle data, maybe contaminated with e, μ, \ldots)

Single hadron inclusive production and pQCD

From Albino-Kniehl-Kramer (AKK) fit of 2005 (no unidentified particle data, maybe contaminated with e, μ, \ldots)

Such fits give e.g. $\alpha_s(M_Z) = 0.117^{+0.005}_{-0.007}$ (KKPötter)

Single hadron inclusive production and pQCD

From Albino-Kniehl-Kramer (AKK) fit of 2005 (no unidentified particle data, maybe contaminated with e, μ, \ldots)

Such fits give e.g. $\alpha_s(M_Z) = 0.117^{+0.005}_{-0.007}$ (KKPötter)

More recently: HKNS, DSS, AKK08

Single hadron inclusive production and pQCD

$\gamma^* p \rightarrow h + X$ data from HERA

Ratios of quark fragmentation contributions in ? $\rightarrow h + X$

(This is for unidentified hadrons \simeq charged pions)

Single hadron inclusive production and pQCD

$\gamma^* p \rightarrow h + X$ data from HERA Albino et al. 2007

If good constraints on all pion FFs \rightarrow agreement at large Q, then disagreement at small Q from theoretical errors (e.g. large/small x resummation, detected hadron mass, etc.)

Predictions using FFs from e⁺e⁻

$$\gamma^* p \rightarrow h + X$$
 data from HERA

Perturbative errors from scale variation

Largest at small Q and small/large $x \rightarrow$ resummation may help

Single hadron inclusive production and pQCD

$\gamma^* p \rightarrow h + X$ data from HERA

New improved data from HERA

New improved FFs needed

Single hadron inclusive production and pQCD

Detected hadron mass effects (Albino et al., 2006-2008)

Single hadron inclusive production and pQCD

$$\bullet \ \frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

Single hadron inclusive production and pQCD

Detected hadron mass effects (Albino et al., 2006-2008)

•
$$\frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

• identify x, z as ratios of light-like momenta

Single hadron inclusive production and pQCD

•
$$\frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

- identify x, z as ratios of light-like momenta
- find $x = x(x_{\text{measured}})$

Single hadron inclusive production and pQCD

•
$$\frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

- identify x, z as ratios of light-like momenta
- find $x = x(x_{\text{measured}})$
- take $\frac{d\sigma^h}{dx_{management}} = \frac{dx}{dx_{management}} \frac{d\sigma^h}{dx}$

Single hadron inclusive production and pQCD

•
$$\frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

- identify x, z as ratios of light-like momenta
- find $x = x(x_{\text{measured}})$
- take $\frac{d\sigma^h}{dx_{\text{managered}}} = \frac{dx}{dx_{\text{managered}}} \frac{d\sigma^h}{dx}$
- Modification at low x, E_S e.g. HERA data:

Single hadron inclusive production and pQCD

Detected hadron mass effects (Albino et al., 2006-2008)

•
$$\frac{d\sigma^h}{dx}(x, E_S^2) = \sum_{i=q,g} \int_x^1 \frac{dz}{z} \frac{d\sigma^i}{d(x/z)} \left(\frac{x}{z}, \frac{E_S^2}{M_f^2}, a_s(M_f^2)\right) D_i^h(z, M_f^2)$$

- identify x, z as ratios of light-like momenta
- find $x = x(x_{\text{measured}})$
- take $\frac{d\sigma^h}{dx_{\text{measured}}} = \frac{dx}{dx_{\text{measured}}} \frac{d\sigma^h}{dx}$
- Modification at low x, E_S e.g. HERA data:

Improving the small x region

Theoretical improvements

- $\frac{d\sigma^i}{dx}$, large x (\equiv large ω), $\simeq 1 + Aa_s \ln \omega + Ba_s^2 \ln^2 \omega + \dots$
 - \rightarrow perturbation theory fails

- $\frac{d\sigma^i}{dx}$, large $x \ (\equiv \text{large } \omega)$, $\simeq 1 + Aa_s \ln \omega + Ba_s^2 \ln^2 \omega + \dots$ \rightarrow perturbation theory fails
- resum to get $f(a_s \ln \omega)$

- $\frac{d\sigma'}{ds}$, large $x \ (\equiv \text{large } \omega), \simeq 1 + Aa_s \ln \omega + Ba_s^2 \ln^2 \omega + \dots$ → perturbation theory fails
- resum to get $f(a_s \ln \omega)$
- Likewise, subleading $\bar{A}a_s + \bar{B}a_s(a_s \ln \omega) + \bar{C}a_s(a_s \ln \omega)^2 + \dots$ $\rightarrow a_s \bar{f}(a_s \ln \omega)$

- $\frac{d\sigma^i}{dx}$, large x (\equiv large ω), $\simeq 1 + Aa_s \ln \omega + Ba_s^2 \ln^2 \omega + \dots$ \rightarrow perturbation theory fails
- resum to get $f(a_s \ln \omega)$
- Likewise, subleading $\bar{A}a_s + \bar{B}a_s(a_s \ln \omega) + \bar{C}a_s(a_s \ln \omega)^2 + \dots$ $\rightarrow a_s \bar{f}(a_s \ln \omega)$
- Albino et al. (2008): resummation in DGLAP evolution
 → modifies theoretical errors

Single hadron inclusive production and pQCD

Detected hadron mass effects

"Naive" FO calculation is sufficient

Improving the small x region

Detected hadron mass effects

"Naive" FO calculation is sufficient

Improving the small x region

Main caveat: mass effects for heavier particles

Detected hadron mass effects

"Naive" FO calculation is sufficient

Improving the small x region

Main caveat: mass effects for heavier particles (Second caveat: Complex decay patterns)

Single hadron inclusive production and pQCD

Detected hadron mass effects

"Naive" FO calculation is sufficient

Improving the small x region

Main caveat: mass effects for heavier particles (Second caveat: Complex decay patterns)

Fitting m_h subtracts unaccounted-for small x, E_S effects

Single hadron inclusive production and pQCD

Detected hadron mass effects

AKK08: Fit m_h to e^+e^- data

Particle	Fitted mass (MeV)	True mass (MeV)		
π^\pm	154.6	139.6		
\mathcal{K}^\pm	337.0	493.7		
$p/ar{p}$	948.8	938.3		
K_S^0	343.0	497.6		
$\Lambda/\overline{\Lambda}$	1127.0	1115.7		

Detected hadron mass effects

AKK08: Fit m_h to e^+e^- data

Particle	Fitted mass (MeV)	True mass (MeV)		
π^{\pm}	154.6	139.6		
K^\pm	337.0	493.7		
p/\bar{p}	948.8	938.3		
K_S^0	343.0	497.6		
$\Lambda/\overline{\Lambda}$	1127.0	1115.7		

• π^{\pm} : overshoot \longrightarrow e.g. $\rho(770) \rightarrow \pi^{+} + \pi^{-}$

AKK08: Fit m_h to e^+e^- data

Improving the small x region

Detected hadron mass effects

- π^{\pm} : overshoot \longrightarrow e.g. $\rho(770) \rightarrow \pi^{+} + \pi^{-}$
- Ks: undershoot \longrightarrow complicated decays $(K^* \to \pi + K, ...)$ undershoot for $K_s^0 \simeq$ for $K^{\pm} \to SU(2)$ isospin

Detected hadron mass effects

AKK08: Fit m_h to e^+e^- data

Particle	Fitted mass (MeV)	True mass (MeV)		
π^{\pm}	154.6	139.6		
K^\pm	337.0	493.7		
p/\bar{p}	948.8	938.3		
K_S^0	343.0	497.6		
$\Lambda/\overline{\Lambda}$	1127.0	1115.7		

- π^{\pm} : overshoot \longrightarrow e.g. $\rho(770) \rightarrow \pi^{+} + \pi^{-}$
- Ks: undershoot \longrightarrow complicated decays $(K^* \to \pi + K, ...)$ undershoot for $K_S^0 \simeq$ for $K^\pm \to SU(2)$ isospin
- baryons $(p/\overline{p}, \Lambda/\overline{\Lambda})$: $\simeq +1\%$ resonances slightly heavier good environment to study partonic fragmentation

Detected hadron mass effects

Improving the small x region

Large x resummation

Improving the small x region

AKK08:

Н	χ^2		
''	Main fit	Unres. fit	
π^{\pm}	518.7	519.0	
Κ±	416.6	439.4	
p/\bar{p}	525.2	538.0	
K_S^0	317.2	318.7	
$\Lambda/\overline{\Lambda}$	273.1	325.7	

Latest global fit: AKK08 (Nucl. Phys. B)

Systematic errors

Latest global fit: AKK08 (Nucl. Phys. B)

Systematic errors

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

Systematic errors

Single hadron inclusive production and pQCD

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

effect of Kth source of systematic error:
$$f_i^e \to f_i^e + \lambda_K \sigma_i^K$$
, where $P(\lambda_K) \propto \exp\left[-\frac{1}{2}\lambda_K^2\right]$ (i.e. $\langle \lambda_K^2 \rangle = 1$)

Systematic errors

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

effect of Kth source of systematic error:
$$f_i^e \to f_i^e + \lambda_K \sigma_i^K$$
, where $P(\lambda_K) \propto \exp\left[-\frac{1}{2}\lambda_K^2\right]$ (i.e. $\langle \lambda_K^2 \rangle = 1$)
$$\chi^2 = \sum_i \left(\frac{f_i^t - (f_i^e + \sum_K \lambda_K \sigma_i^K)}{\sigma_i}\right)^2 + \sum_K \lambda_K^2$$

Systematic errors

Single hadron inclusive production and pQCD

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

effect of Kth source of systematic error:
$$f_i^e \to f_i^e + \lambda_K \sigma_i^K$$
, where $P(\lambda_K) \propto \exp\left[-\frac{1}{2}\lambda_K^2\right]$ (i.e. $\langle \lambda_K^2 \rangle = 1$)
$$\chi^2 = \sum_i \left(\frac{f_i^t - (f_i^e + \sum_K \lambda_K \sigma_i^K)}{\sigma_i}\right)^2 + \sum_K \lambda_K^2$$

Choose
$$\lambda_K$$
 such that $\frac{\partial \chi^2}{\partial \lambda_K} = 0$

Systematic errors

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

effect of Kth source of systematic error:
$$f_i^e \to f_i^e + \lambda_K \sigma_i^K$$
, where $P(\lambda_K) \propto \exp\left[-\frac{1}{2}\lambda_K^2\right]$ (i.e. $\langle \lambda_K^2 \rangle = 1$)
$$\chi^2 = \sum_i \left(\frac{f_i^t - (f_i^e + \sum_K \lambda_K \sigma_i^K)}{\sigma_i}\right)^2 + \sum_K \lambda_K^2$$

Choose
$$\lambda_K$$
 such that $\frac{\partial \chi^2}{\partial \lambda_K} = 0$

$$\lambda \rightarrow \chi^2 = \sum_{ij} (f_i^t - f_i^e) (C^{-1})_{ij} (f_j^t - f_j^e)$$
 and $\lambda_K = \dots$

Systematic errors

Single hadron inclusive production and pQCD

No systematic effects:
$$P(\{f_i^e\}, \{f_i^t\}) \propto \exp\left[-\frac{1}{2}\chi^2 = \sum_i \left(\frac{f_i^t - f_i^e}{\sigma_i}\right)^2\right]$$

effect of Kth source of systematic error:
$$f_i^e \to f_i^e + \lambda_K \sigma_i^K$$
, where $P(\lambda_K) \propto \exp\left[-\frac{1}{2}\lambda_K^2\right]$ (i.e. $\langle \lambda_K^2 \rangle = 1$)
$$\chi^2 = \sum_i \left(\frac{f_i^t - (f_i^e + \sum_K \lambda_K \sigma_i^K)}{\sigma_i}\right)^2 + \sum_K \lambda_K^2$$

Choose
$$\lambda_K$$
 such that $\frac{\partial \chi^2}{\partial \lambda_K} = 0$

$$\rightarrow \chi^2 = \sum_{ij} (f_i^t - f_i^e) (C^{-1})_{ij} (f_j^t - f_j^e)$$
 and $\lambda_K = \dots$

Unknown systematic effects may give $|\lambda_K| \gg 1$

Systematic errors

$$\pi^{\pm}$$
 production data

Expect
$$|\lambda_K| \simeq 1$$

AKK08:

Collaboration	$\frac{\sqrt{s}}{(GeV)}$	# data	Norm. (%)	$\chi^2_{ m DF}$	λ_{K}
TASSO	12	5	20	0.50	0.21
TASSO	14	10	8.5	0.92	-1.26
TASSO	22	1	6.3	0.01	-0.08
TASSO	30	4	20	0.57	0.69
TASSO	34	10	6	1.07	0.62
TASSO	44	7	6	1.99	0.66
ALEPH	91.2	22	3	0.61	-0.55
BRAHMS, $y \in [2.9, 3]$	200	8	11,7,8(13),	0.96	-1.76, -1.12, -1.22, -0.32, -0.13
$y \in [3.25, 3.35]$	200	7	2,1(3)	2.68	-2.01, -1.28, -1.80, -0.37, -0.32
PHENIX (π^0) , $ \eta < 0.35$	200	13	9.7	0.54	-0.48
STAR (π^{0}) , $\eta = 3.3$	200	4	16	0.70	-0.70
STAR (π^0) , $\eta = 3.8$	200	2	16	0.57	-0.31
STAR, $ y < 0.5$	200	10	11.7	0.49	-0.34

$pp \rightarrow h + X$ data from RHIC

Ratios of proton's valence/sea quark fragmentation contributions (can be given scheme / scale independent definition)

$pp \rightarrow h + X$ data from RHIC

Proton's valence quark fragmentation contributions

to
$$d\sigma^{h^+} - d\sigma^{h^-}$$

Improving the small x region

Comparison of FF sets

 $u \to \pi$ favoured : well constrained by e^+e^-

Comparison of FF sets

 $u \to \pi$ favoured : well constrained by e^+e^-

 $s \to \pi$ unfavoured

Improving the small x region

Comparison of FF sets

$g \to \pi$ constrained mainly by pp

Comparison of FF sets

$$D_{u,d}^{h^+}-D_{u,d}^{h^-}$$

HKNS: no $d\sigma^{h^+} - d\sigma^{h^-}$ data, but \sim FF assumptions as DSS

Latest global fit: AKK08 (Nucl. Phys. B)

Comparison of FF sets

$$D_{u,d}^{h^+}-D_{u,d}^{h^-}$$

HKNS: no $d\sigma^{h^+} - d\sigma^{h^-}$ data, but \sim FF assumptions as DSS

Single hadron inclusive production and pQCD

Comparison of FF sets

$$D_{u,d}^{h^+}-D_{u,d}^{h^-}$$

BRAHMS → higher FF

(HKNS: negative)

Improving the small x region

HKNS: no $d\sigma^{h^+}-d\sigma^{h^-}$ data, but \sim FF assumptions as DSS

Outline

- Single hadron inclusive production and pQCI
 - Introduction
 - Measurements of single hadron inclusive production

FFs at large x

- Outline of factorization
- 2 FFs at large x
 - Cross section in the fixed order approach
 - Global fits
 - Predictions using FFs from e^+e^-
 - Theoretical improvements
 - Latest global fit: AKK08 (Nucl. Phys. B)
- Improving the small x region
 - Soft gluon logarithms in splitting functions
 - Unified approach
 - Fits to data

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{LO \ term}$$

$$=a_sP^{(0)}=a_s\left(\begin{array}{cc}0&\frac{1}{2}\\0&\frac{1}{2}\end{array}\right)$$

Improving the small x region

 $=a_sP^{(0)}=a_s\left(\begin{array}{cc}0&\frac{1}{2}\\0&\frac{1}{2}\end{array}\right)$

00000

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{\text{LO term}}$$

Type FFs PDFs
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{\text{NLO term}} = a_s^2 P^{(1)} \quad a_s^2 \begin{pmatrix} \frac{1}{z} & \frac{\ln^2 z}{z} \\ \frac{1}{z} & \frac{\ln^2 z}{z} \end{pmatrix} \quad a_s^2 \begin{pmatrix} \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \end{pmatrix}$$
 pert. approach
$$x > 0.1 \qquad x_B > 10^{-4}$$

Single hadron inclusive production and pQCD Soft gluon logarithms in splitting functions

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{\text{LO term}} = a_s P^{(0)} = a_s \begin{pmatrix} 0 & \frac{1}{z} \\ 0 & \frac{1}{z} \end{pmatrix}$$

Туре	FFs	PDFs
$\left(egin{array}{cc} P_{qq} & P_{qg} \ P_{gq} & P_{gg} \end{array} ight)_{ m NLO~term} = a_s^2 P^{(1)}$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{\ln^2 z}{z} \\ \frac{1}{z} & \frac{\ln^2 z}{z} \end{array} \right)$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \end{array} \right)$
pert. approach	x > 0.1	$x_B > 10^{-4}$

Single hadron inclusive production and pQCD Soft gluon logarithms in splitting functions

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{\text{LO term}} = a_s P^{(0)} = a_s \begin{pmatrix} 0 & \frac{1}{z} \\ 0 & \frac{1}{z} \end{pmatrix}$$

Туре	FFs	PDFs
$\left(egin{array}{cc} P_{qq} & P_{qg} \ P_{gq} & P_{gg} \end{array} ight)_{ m NLO \ term} = a_s^2 P^{(1)}$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{\ln^2 z}{z} \\ \frac{1}{z} & \frac{\ln^2 z}{z} \end{array} \right)$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \end{array} \right)$
pert. approach	x > 0.1	$x_B > 10^{-4}$

At
$$O(a_s^n)$$
, DL has form $(1/z)(a_s \ln z)^2(a_s \ln^2 z)^{n-1}$

Soft gluon logarithms in splitting functions

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{\text{LO term}} = a_s P^{(0)} = a_s \begin{pmatrix} 0 & \frac{1}{z} \\ 0 & \frac{1}{z} \end{pmatrix}$$

Туре	FFs	PDFs
$\left(egin{array}{cc} P_{qq} & P_{qg} \ P_{gq} & P_{gg} \end{array} ight)_{ m NLO \ term} = a_s^2 P^{(1)}$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{\ln^2 z}{z} \\ \frac{1}{z} & \frac{\ln^2 z}{z} \end{array} \right)$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \end{array} \right)$
pert. approach	x > 0.1	$x_B > 10^{-4}$

At
$$O(a_s^n)$$
, DL has form $(1/z)(a_s \ln z)^2(a_s \ln^2 z)^{n-1}$

$$\rightarrow$$
 small x inaccurate at $\ln(1/x) \gtrsim O(a_s^{-1/2})$

 $=a_sP^{(0)}=a_s\left(egin{array}{cc}0&rac{1}{2}\\0&rac{1}{2}\end{array}
ight)$

Small x: FFs vs. PDFs

Small z:
$$\begin{pmatrix} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix}_{LO \text{ term}}$$

Туре	FFs	PDFs
$\left(egin{array}{cc} P_{qq} & P_{qg} \ P_{gq} & P_{gg} \end{array} ight)_{ m NLO \ term} = a_s^2 P^{(1)}$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{\ln^2 z}{z} \\ \frac{1}{z} & \frac{\ln^2 z}{z} \end{array} \right)$	$a_s^2 \left(\begin{array}{cc} \frac{1}{z} & \frac{1}{z} \\ \frac{1}{z} & \frac{1}{z} \end{array} \right)$
pert. approach	x > 0.1	$x_B > 10^{-4}$

At
$$O(a_s^n)$$
, DL has form $(1/z)(a_s \ln z)^2(a_s \ln^2 z)^{n-1} \left(\frac{a_s}{\omega} \left(\frac{a_s}{\omega^2}\right)^{n-1}\right)$

$$\rightarrow$$
 small x inaccurate at $\ln(1/x) \gtrsim O(a_s^{-1/2})$ ($\omega \lesssim O(\sqrt{a_s})$)

Outline of DLA: Behaviour at small momentum fractions

• $\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{E_i} \simeq a_s \ln^2$

Unified approach

Outline of DLA: Behaviour at small momentum fractions

Single hadron inclusive production and pQCD

AKK08

Outline of DLA: Behaviour at small momentum fractions

- $\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{E_i} \simeq a_s \ln^2$
- Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$

Outline of DLA: Behaviour at small momentum fractions

Single hadron inclusive production and pQCD

• $\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{F_i} \simeq a_s \ln^2$

Improving the small x region

- Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$
- Ollinear part ∈ FFs:

$$E_T = E_{i-1}\theta_{i-1} > M_f$$

$$\therefore E_i\theta_i > \mathbf{z'}M_f$$

Outline of DLA: Behaviour at small momentum fractions

Single hadron inclusive production and pQCD

•
$$\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{E_i} \simeq a_s \ln^2$$

Improving the small x region

- Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$
- Ollinear part ∈ FFs:

$$E_T = E_{i-1}\theta_{i-1} > M_f$$

$$\therefore E_i\theta_i > \mathbf{z}'M_f$$

$$\to \frac{d}{d \ln M_f^2} D(z, M_f^2) = \int_z^1 \frac{dz'}{z'} a_s(z'^2 M_f^2) P^{(0)}(z') D\left(\frac{z}{z'}, z'^2 M_f^2\right)$$

Outline of DLA: Behaviour at small momentum fractions

Single hadron inclusive production and pQCD

•
$$\mathcal{P}(G_{i-1} \to G_i + ...) \propto a_s \frac{d\theta_i}{\theta_i} \frac{dE_i}{E_i} \simeq a_s \ln^2$$

Improving the small x region

- Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$
- Ollinear part ∈ FFs: $E_T = E_{i-1}\theta_{i-1} > M_f$

$$E_T = E_{i-1}\theta_{i-1} > M_f$$

$$\therefore E_i\theta_i > \mathbf{z}'M_f$$

$$\to \frac{d}{d \ln M_f^2} D(z, M_f^2) = \int_z^1 \frac{dz'}{z'} a_s(z'^2 M_f^2) P^{(0)}(z') D\left(\frac{z}{z'}, z'^2 M_f^2\right)$$

In $P^{(0)}(z)$, only take small z sings $\simeq 2C_AA/z$ where $A^2=A$

Single hadron inclusive production and pQCD

Outline of DLA: Behaviour at small momentum fractions

$$\sim$$
 $\mathcal{P}(G_{i-1}
ightarrow G_i + ...) \propto a_s rac{d\theta_i}{\theta_i} rac{dE_i}{E_i} \simeq a_s \ln^2$

Improving the small x region

- Strong ordering: $(E, \theta)_i \ll (E, \theta)_{i-1}$
- Ollinear part ∈ FFs: $E_{\tau} = E_{i-1}\theta_{i-1} > M_{\epsilon}$

$$E_T = E_{i-1}\theta_{i-1} > M_f$$

$$\therefore E_i\theta_i > \mathbf{z'}M_f$$

$$\to \frac{d}{d \ln M_f^2} D(z, M_f^2) = \int_z^1 \frac{dz'}{z'} a_s(z'^2 M_f^2) P^{(0)}(z') D\left(\frac{z}{z'}, z'^2 M_f^2\right)$$

In $P^{(0)}(z)$, only take small z sings $\simeq 2C_AA/z$ where $A^2=A$

→ DLA equation, contains all DLs

$$\frac{d}{d \ln M_f^2} D(z, M_f^2) = \int_z^1 \frac{dz'}{z'} \frac{2C_A}{z'} A \ a_s(z'^2 M_f^2) D\left(\frac{z}{z'}, z'^2 M_f^2\right)$$

Single hadron inclusive production and pQCD

DLA improved DGLAP (Albino et al. 2005/6)

Single hadron inclusive production and pQCD

DLA improved DGLAP (Albino et al. 2005/6)
• Use DGLAP equation also at small x

Single hadron inclusive production and pQCD

DLA improved DGLAP (Albino et al. 2005/6)

• Use DGLAP equation also at small x

• But
$$a_s P^{(0)}(z) \longrightarrow \underbrace{a_s \overline{P}^{(0)}(z)}_{a_s P^0 \text{ with DLs subtracted}} + \underbrace{P^{\mathrm{DL}}(z, a_s)}_{\mathrm{DLs to all orders}}$$

 \rightarrow Good approximation for P for large and small z

Single hadron inclusive production and pQCD

DLA improved DGLAP (Albino et al. 2005/6)

- Use DGLAP equation also at small x
- But $a_s P^{(0)}(z) \longrightarrow [a_s \overline{P}^{(0)}(z)] + \underline{P^{\mathrm{DL}}(z, a_s)}$

 $a_s P^0$ with DLs subtracted DLs to all orders \rightarrow Good approximation for P for large and small z

ullet PDL (DL-resummed P) is small z behaviour of P from DLA $P^{\mathrm{DL}}(\omega, a_s) = \frac{A}{4} \left(-\omega + \sqrt{\omega^2 + 16C_A a_s} \right)$

Single hadron inclusive production and pQCD

Unified approach

DLA improved DGLAP (Albino et al. 2005/6)

- Use DGLAP equation also at small x
- $a_s \overline{P}^{(0)}(z)$ • But $a_s P^{(0)}(z) \longrightarrow$

 $a_s P^0$ with DLs subtracted DLs to all orders \rightarrow Good approximation for P for large and small z

ullet PDL (DL-resummed P) is small z behaviour of P from DLA $P^{\mathrm{DL}}(\omega, a_{s}) = \frac{A}{4} \left(-\omega + \sqrt{\omega^{2} + 16C_{A}a_{s}} \right)$

AKK08

DLA improved DGLAP (Albino et al. 2005/6)

- Use DGLAP equation also at small x
- But $a_s P^{(0)}(z) \longrightarrow \underbrace{a_s \overline{P}^{(0)}(z)} + \underbrace{P^{\mathrm{DL}}(z, a_s)}$

 $a_s P^0$ with DLs subtracted DLs to all orders \rightarrow Good approximation for P for large and small z

• P^{DL} (DL-resummed P) is small z behaviour of P from DLA $P^{\mathrm{DL}}(\omega, a_s) = \frac{A}{4} \left(-\omega + \sqrt{\omega^2 + 16C_A a_s} \right)$

Approach definable ∀ SGLs

DLA improved DGLAP (Albino et al. 2005/6)

- Use DGLAP equation also at small x
- But $a_s P^{(0)}(z) \longrightarrow \underbrace{a_s \overline{P}^{(0)}(z)} + \underbrace{P^{\mathrm{DL}}(z, a_s)}$

 $a_s P^0$ with DLs subtracted DLs to all orders \rightarrow Good approximation for P for large and small z

• P^{DL} (DL-resummed P) is small z behaviour of P from DLA $P^{\mathrm{DL}}(\omega, a_s) = \frac{A}{4} \left(-\omega + \sqrt{\omega^2 + 16C_A a_s} \right)$

- Approach definable ∀ SGLs
- Consistent with MLLA

Fits to data

Procedure

Fits to data

Procedure

Single hadron inclusive production and pQCD

Use hadron-unidentifed data

00000

Fits to data

Procedure

- Use hadron-unidentifed data
- Large $M_0 \rightarrow$ assumptions for $D_i(z, M_0^2)$ from DLA:

00000

Procedure

- Use hadron-unidentifed data
- Large $M_0 \rightarrow$ assumptions for $D_i(z, M_0^2)$ from DLA:
 - Behaves like Gaussian in $\xi = \ln 1/z$ at small z

Procedure

- Use hadron-unidentifed data
- Large $M_0 \rightarrow$ assumptions for $D_i(z, M_0^2)$ from DLA:
 - Behaves like Gaussian in $\xi = \ln 1/z$ at small z
 - $\sum_{q} D_{q,\bar{q}} \simeq \frac{C_F}{C_A} D_g$

Procedure

- Use hadron-unidentifed data
- Large $M_0 \rightarrow$ assumptions for $D_i(z, M_0^2)$ from DLA:
 - Behaves like Gaussian in $\xi = \ln 1/z$ at small z
 - $\sum_{q} D_{q,\bar{q}} \simeq \frac{C_F}{C_A} D_g$
- Fit $\Lambda_{\rm QCD}$ and m_h

00000

Results

$$P = a_s P^{(0)}$$
 (old)

P = $a_s P^{(0)}$ (old)

OPAL 172

OPAL 172

OPAL 173

OPAL 173

OPAL 174

OPAL 175

OPAL

Results

Single hadron inclusive production and pQCD

Improving the small x region

00000

Summary

ullet FFs well constrained by exp data, particularly e^+e^-

- FFs well constrained by exp data, particularly e^+e^-
- Predictions for pp/ep data consistent with FF universality

FFs at large x

- FFs well constrained by exp data, particularly e^+e^-
- Predictions for pp/ep data consistent with FF universality
- Valence quark / gluon FFs weakly constrained by RHIC pp

- FFs well constrained by exp data, particularly e^+e^-
- ullet Predictions for pp/ep data consistent with FF universality
- Valence quark / gluon FFs weakly constrained by RHIC pp
- Large x resummation can make significant improvement

Summary

- FFs well constrained by exp data, particularly e^+e^-
- ullet Predictions for pp/ep data consistent with FF universality
- Valence quark / gluon FFs weakly constrained by RHIC pp
- Large x resummation can make significant improvement
- Fitted baryon masses good, deviation of fitted masses may measure indirect fragmentation

FFs at large x

Summary

- FFs well constrained by exp data, particularly e^+e^-
- ullet Predictions for pp/ep data consistent with FF universality
- Valence quark / gluon FFs weakly constrained by RHIC pp
- Large x resummation can make significant improvement
- Fitted baryon masses good, deviation of fitted masses may measure indirect fragmentation
- Full treatment of exp data errors

- FFs well constrained by exp data, particularly e^+e^-
- Predictions for pp/ep data consistent with FF universality
- Valence quark / gluon FFs weakly constrained by RHIC pp
- Large x resummation can make significant improvement
- Fitted baryon masses good, deviation of fitted masses may measure indirect fragmentation
- Full treatment of exp data errors
- Small x resummation within standard framework

Improving the small \boldsymbol{x} region $\circ\circ\circ\circ\circ$

Future

Future

• Theory improvements (heavy quarks, NNLO, small x logs)

- Theory improvements (heavy quarks, NNLO, small x logs)
- Accurate data from HERA, RHIC, LEP, CLEO, Belle, BaBar

. . .

Future

- Theory improvements (heavy quarks, NNLO, small x logs)
- Accurate data from HERA, RHIC, LEP, CLEO, Belle, BaBar
- Development of FF error determination