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Fundamental constants

• The speed of light c = 299792458m s−1

• Planck’s constant ~ = 1.054571628(53) ·10−34J s

• Constants associated to fundamental forces:

– Newton’s constant GN = 6.67428(67) ·10−11m3 kg−1s−2

– Electric charge e = 1.602176487(40) ·10−19C
– Fermi’s constant GF = 1.16637(1) ·10−5GeV−2(~c)3

– Strong coupling constant αs(mZ) = 0.1176(20)

• Masses of elementary particles, mixing angles, etc.

In theoretical physics it is common to set c = ~ = 1.



The four fundamental forces

We like dimensionless quantities:

Gravitation:

GNm2
p = 5.9·10−39

Electric force:

α =
e2

4π
=

1
137

= 0.007297

Weak force:

GFm2
W = 0.0754

Strong force:

αs =
g2

s

4π
= 0.118



The fine-structure constant

Measurement at Q2 = 0 (Thomson limit of Compton scattering, quantum Hall effect,
anomalous magnetic moment of the electron):

α =
1

137

Measurement at Q2 = m2
Z (LEP, HERA):

α =
1

128

The value is larger at higher scales !



Screening

Qualitative understanding:

Imagine a bare charge, which is screened
by polarization charges.

At higher energies we probe shorter
distances and screening effects are
reduced.

− + − ++ −+ −

−
+

−
+

−
+

−
+

−
+

−
+

−
+

−
+

−+

−
+

−
+

−+

−
+

−
+

−
+

−
+

+



Scale-variation of the electro-magnetic coupling

µ2 d
dµ2

( α
4π

)

=
4
3

( α
4π

)2
+O(α3)

µ[MeV]

α
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Scale-variation of the strong coupling

µ2 d
dµ2

(αS

4π

)

=

(
2
3

Nf −11

)(αS

4π

)2
+O(α3

s)

The slope is negative !

As before:
Fermion loops give a positive contribution: 2/3Nf

But now:
Boson loops give a negative contribution: −11

For Nf ≤ 16 the sum is negative !
Gross Wilczek, ’73, Politzer, ’73



Asymptotic freedom

Gross, Politzer and Wilczek: Nobelprize 2004 for the discovery
of asymptotic freedom in the theory of the strong interaction.
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Measurement of the strong coupling

αs can be measured in a variety of
processes:

• Deep inelastic scattering,

• τ-decays,

• heavy quarkonium,

• electron-positron annihilation,

• hadron collisions, ...

(S. Bethke, ’06.)



The strong coupling from electron-positron annihilation

One possibility: Extract αs from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph
experiment at LEP:



Jet algorithms

Ingredients:

• a resolution variable yi j where a smaller yi j means that particles i and j are “closer”:

yDURHAM
i j =

2(1−cosθi j )

Q2
min(E2

i ,E
2
j )

• a combination procedure which combines two four-momenta into one:

pµ
(i j ) = pµ

i + pµ
j .

• a cut-off ycut which provides a stopping point for the algorithm.



Event shapes

What experimentalists measure: Event shapes

Example: Thrust

T = max
n̂

∑
i
|~pi · n̂|

∑
i
|~pi|

For two particles back-to-back one has

T = 1

For many particles, isotropically distributed we have

T =
1
2



Perturbation theory

Due to the smallness of the coupling constants α and αs, we may compute an
observable at high energies reliable in perturbation theory,

〈O〉 =
αs

2π
〈O〉LO+

(αs

2π

)2
〈O〉NLO+

(αs

2π

)3
〈O〉NNLO+ ...

Feynman diagrams contributing to the leading order:

e−

e+

q̄

q

gZ/γ

e−

e+

q̄

q

g
Z/γ

Leading order proportional to αs !



The need for precision

Objectives for LHC: Extract fundamental quantities like αs to high precision.

Theoretical predictions are calculated as a power expansion in the coupling. Higher
precision is reached by including the next higher term in the perturbative expansion.

State of the art:

• Third or fourth order calculations for a few selected quantities (R-ratio, QCD β-
function, anomalous magnetic moment of the muon).

• NNLO calculations for a few selected 2→ 2 and 2→ 3 processes.

• NLO calculations for 2→ n (n = 2,3,4) processes.

• LO calculations for 2→ n (n = 2, ...,8) processes.



Higher orders in perturbation theory

Higher order contribution to the two-jet cross-section σ ∼ |A |2:

Virtual corrections:

2 Re









∗





 ∼ g2
s

Real emission:









∗





 ∼ g2
s



Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.

At leading order:
ycut

At next-to-leading order:
ycut ycut

At next-to-next-to-leading
order:

ycut ycut ycut



Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):

|An|
2 = A

(0)
n

∗
A

(0)
n︸ ︷︷ ︸

Born

+
(

A
(0)
n

∗
A

(1)
n +A

(1)
n

∗
A

(0)
n

)

︸ ︷︷ ︸
virtual

+
(

A
(0)
n

∗
A

(2)
n +A

(2)
n

∗
A

(0)
n +A

(1)
n

∗
A

(1)
n

)

︸ ︷︷ ︸
two-loop and loop-loop

,

|An+1|
2 = A

(0)
n+1

∗
A

(0)
n+1︸ ︷︷ ︸

real

+
(

A
(0)
n+1

∗
A

(1)
n+1+A

(1)
n+1

∗
A

(0)
n+1

)

︸ ︷︷ ︸
loop+unresolved

,

|An+2|
2 = A

(0)
n+2

∗
A

(0)
n+2︸ ︷︷ ︸

double unresolved

.

A
(l)
n : amplitude with n external particles and l loops.



Challenges

What are the bottle-necks ?

• Length: Perturbative calculations lead to expressions with a huge number of terms.

• Integrals: At one-loop and beyond, the occuring integrals cannot be simply looked
up in an integral table.

• Divergences: At NLO and beyond, infrared divergences occur in intermediate
stages, if massless particles are involved.

• Numerics: Stable and efficient numerical methods are required for the Monte Carlo
integration.



Computer algebra

Computer-intensive symbolic calculations in particle physics can be characterized by:

• Need for basic operations like addition, multiplication, sorting ...

• Specialized code usually written by the user

• No need for a system which knows “more” than the user!

CAS on the market:

• Commercial: Mathematica, Maple, Reduce, ...

• Non-commercial: FORM , GiNaC, ...
Vermaseren; Bauer, Frink, Kreckel, Vollinga, ...



The amplitudes for e+e− → 3 jets at NNLO

A NNLO calculation of e+e− → 3 jets requires the following amplitudes:

• Born amplitudes for e+e− → 5 jets:
F. Berends, W. Giele and H. Kuijf, 1989;

K. Hagiwara and D. Zeppenfeld, 1989.

• One-loop amplitudes for e+e− → 4 jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;

J. Campbell, N. Glover and D. Miller, 1996.

• Two-loop amplitudes for e+e− → 3 jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;

S. Moch, P. Uwer and S.W., 2002.



The calculation of two-loop integrals

• Techniques to calculate two-loop integrals

– Mellin-Barnes transformation, Smirnov ’99, Tausk ’99.
– Differential equations, Gehrmann, Remiddi ‘00.
– Nested sums, Moch, Uwer, S.W. ‘01.
– Sector decomposition (numerical), Binoth, Heinrich, ’00.

• Methods to reduce the work-load:

– Integration-by-parts, Chetyrkin, Kataev, Tkachov ‘81.
– Reduction algorithms, Tarasov ‘96, Laporta ’01.
– Cut technique Bern, Dixon, Kosower, ’00



The double-box integral

Two-loop amplitudes for 2→ 2 processes involve the double-box integral:

• First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.

• Calculation based on Mellin-Barnes representation.

• Result expressed in harmonic polylogarithms.

Hm1,...,mk(x) = ∑
i1>i2>...>ik>0

xi1

im1
1 im2

2 ...imk
k

, x =
s
t
.



Multiple polylogarithms

• Definition:

Lim1,...,mk(x1, ...,xk) = ∑
i1>i2>...>ik>0

xi1
1

im1
1

xi2
2

im2
2

...
xik

k

imk
k

.

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

• Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs
(Remiddi and Vermaseren, Gehrmann and Remiddi).

• Have also an integral representation.

• Obey two Hopf algebras (Moch, Uwer, S.W.).

• Can be evaluated numerically for all complex values of the arguments
(Gehrmann and Remiddi, Vollinga and S.W.).



Infrared divergences and the Kinoshita-Lee-Nauenberg the orem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.
unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



The subtraction method

The NLO cross section is rewritten as

σNLO =
Z

n+1

dσR+
Z

n

dσV =
Z

n+1

(
dσR−dσA

)
+

Z

n



dσV +
Z

1

dσA





The approximation dσA has to fulfill the following requirements:

• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour as dσR itself.
Thus, dσA acts as a local counterterm for dσR.

• Analytic integrability over the one-parton subspace leading to soft and collinear
divergences.

Catani, Seymour, ’96



An example involving double unresolved configurations

The leading-colour contributions to e+e− → qggq̄.

Double unresolved configurations:

- Two pairs of separately collinear particles
- Three particles collinear
- Two particles collinear and a third soft particle
- Two soft particles
- Coplanar degeneracy

Single unresolved configurations:

- Two collinear particles
- One soft particle

p1
p2
p3

p4

p1
p2

p3

p4

p1
p2

p3
p4



The subtraction method at NNLO

• Singular behaviour

– Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,

Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower ’99

– Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, ’99

• Extension of the subtraction method to NNLO Kosower; S.W.; Kilgore; Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trócsányi and Del Duca;

• Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;

• Applications:

– pp→W, Anastasiou, Dixon, Melnikov, Petriello ’03,

– pp→ H, Anastasiou, Dixon, Melnikov, Petriello ’05, Catani, Grazzini ’08

– e+e− → 2 jets, Anastasiou, Melnikov, Petriello ’04, S.W. ’06

– e+e− → 3 jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich ’07, S.W. ’08



Antenna subtraction terms at NNLO

i

j

k

ĩ

k̃

NLO

i

j

k

ĩ

k̃

one-loop unresolved

i
j
k
l

ĩ

l̃

double unresolved

Gehrmann-De Ridder, Gehrmann, Glover, ’05

At NNLO also iterated structures:

i

j

k

l

ĩ

k̃

colour connected

i

j

k

l
m

ĩ

k̃

m̃

almost colour connected



e+e− → 3 jets at NNLO

Fully differential Monte-Carlo programs for 3-jet observables at NNLO:

• EERAD3
Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,

Phys.Rev.Lett.99:132002,2007,

Phys.Rev.Lett.100:172001,2008

• MERCUTIO2
S.W.,

Phys.Rev.Lett.101:162001,2008



Soft gluons

4 partons:

1
2π

2π
Z

0

dφ ln

(
(1+c j)(1−c2)

2(1−c2c j −s2sj cosφ)

)

=

= ln

(
1−c2c j +(c j −c2)

1−c2c j + |c j −c2|

)

.

Non-zero for cj < c2 !

The explicit poles in the four-
parton configuration have to
cancel: dαso f t is needed.

The five-parton contribution has
to be independent of the slicing
parameter: −dαso f t is needed.

5 partons:
i

j

k

l
m

ĩ

k̃

m̃

k′

Gluon l soft:

Eikonal factor

Eik(k′, l ,m)

sum
soft

standard

five-parton contributionqq̄ggg, colour factorN0
c

ymin

C
3−

je
t
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Comparison with EERAD3
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Results for the three-jet rate in electron-positron annihi lation

Aleph data
NNLO

NLO
LO

Durham three-jet rate

ycut

je
tr

at
e

10.10.010.0011e-04

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

S.W., Phys.Rev.Lett.101:162001,2008



Results for the thrust distribution

Aleph data
NNLO

NLO
LO

Thrust
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Further refinements

Soft-gluon resummation: Perturbative expansion is of the form

1+c0αs+c1αslnycut +c2αsln2ycut+O(α2)

In the region where αsln2ycut ≈ 1 resum the large logarithms.
Catani, Trentadue, Turnock, Webber, ’93; Becher, Schwartz, ’08

Power corrections: From the operator product expansion we expect power corrections
of the form

λ
Q

+O

(
1

Q2

)

Dokshitzer, Webber, ’97; Davison, Webber, ’08

Current world average:

αs(mZ) = 0.1176(20)

Particle Data Group, ’08



Results for the thrust distribution

Changing the centre-of-mass energy:

Aleph data
NNLO

NLO
LO

Thrust,Q = 91.2GeV
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Summary

• αs is one of the fundamental parameters of nature

• Error on αs dominated by theory

• NNLO calculations reduce the theoretical uncertainty
Re-analysis of JADE data, ...

• Calculational techniques developed for e+e− → 3 jets can be applied to other
processes


