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Fundamental constants

e The speed of light ~ ¢=299792458n s 1
e Planck’s constant  h = 1.05457162853)-10 34 s

e Constants associated to fundamental forces:

— Newton’s constant Gy =6.6742867)-10 1 m3kg~1s2
— Electric charge S —1.60217648740) - 10 1°C

— Fermi’s constant Gr —=1.166371) - 10°GeV?(hc)®
— Strong coupling constant as(mz) = 0.117620)

e Masses of elementary particles, mixing angles, etc.

In theoretical physics it is commontosetc=h = 1.



The four fundamental forces

We like dimensionless quantities:

Gravitation:
Gymy = 59-10°%

Electric force:

e 1
— = = 0.007297
O=n~ 137~ 200729
Weak force:
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The fine-structure constant

Measurement at Q° = 0 (Thomson limit of Compton scattering, quantum Hall effect,
anomalous magnetic moment of the electron):

q - 1
137
Measurement at Q° = m& (LEP, HERA):
q - 1
- 128

The value is larger at higher scales !



Screening

Qualitative understanding:

Imagine a bare charge, which is screened
by polarization charges.

At higher energies we probe shorter
distances and screening effects are
reduced.



Scale-variation of the electro-magnetic coupling
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Scale-variation of the strong coupling
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The slope is negative !

As before:
Fermion loops give a positive contribution: 2/3Ns

But now:
Boson loops give a negative contribution: —11

For Nt < 16the sum is negative !
Gross Wilczek, '73, Politzer, '73



Asymptotic freedom

Gross, Politzer and Wilczek: Nobelprize 2004 for the discovery
of asymptotic freedom in the theory of the strong interaction.
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Os can be measured in a variety of

Measurement of the strong coupling

processes.

Deep inelastic scattering,

T-decays,

heavy quarkonium,

electron-positron annihilation,

hadron collisions, ...
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The strong coupling from electron-positron annihilation

One possibility: Extract ag from three-jet events in electron-positron annihilation.

Jets: A bunch of particles moving in the same direction

A three-jet event from the Aleph &
experiment at LEP:




Jet algorithms

Ingredients:

e aresolution variable y;; where a smaller y;; means that particles | and ] are “closer”:

2(1—coshi;)
yi[j)URHAM _ ( Qz |J) mm(Ei27 EJZ)

e a combination procedure which combines two four-momenta into one:

Pijy = P+

e a cut-off yeut which provides a stopping point for the algorithm.



Event shapes

What experimentalists measure: Event shapes

Example: Thrust

> [Bi- Al
T = max———

f glﬁl

For two particles back-to-back one has

T=1

For many particles, isotropically distributed we have



Perturbation theory

Due to the smallness of the coupling constants a and Os, we may compute an
observable at high energies reliable in perturbation theory,

GS GS

<O> — —<O>LO‘|'<%>2<O>NLQ—|—(ET>3<O>NN|_Q—|—...

21T 21T

Feynman diagrams contributing to the leading order:

q

Leading order proportional to Og!



The need for precision

Objectives for LHC: Extract fundamental quantities like Ogto high precision,

Theoretical predictions are calculated as a power expansion in the coupling. Higher
precision is reached by including the next higher term in the perturbative expansion.

State of the art:

e Third or fourth order calculations for a few selected quantities (R-ratio, QCD [3-
function, anomalous magnetic moment of the muon).

e NNLO calculations for a few selected 2 — 2 and 2 — 3 processes.
e NLO calculations for 2 — n (n= 2,3, 4) processes.

e |O calculations for2 — n(n= 2,...,8) processes.



Higher orders in perturbation theory

Higher order contribution to the two-jet cross-section & ~ | 4|

Virtual corrections:

2Re >“M‘<% >’M‘< ~ g%
M w ~ gg

Real emission:



Modeling of jets:

In a perturbative calculation jets are modeled by only a few partons. This improves
with the order to which the calculation is done.

At leading order: Yeut
At next-to-leading order: yi cut Yeut
At next-to-next-to-leading Yeut Yeut Yeut

S pE



Calculation of observables

Perturbative expansion of the amplitude (LO, NLO, NNLO):
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Challenges

What are the bottle-necks ?

e Length: Perturbative calculations lead to expressions with a huge number of terms.

e I[ntegrals: At one-loop and beyond, the occuring integrals cannot be simply looked
up in an integral table.

e Divergences: At NLO and beyond, infrared divergences occur in intermediate
stages, if massless particles are involved.

e Numerics: Stable and efficient numerical methods are required for the Monte Carlo
Integration.



Computer algebra

Computer-intensive symbolic calculations in particle physics can be characterized by:

e Need for basic operations like addition, multiplication, sorting ...
e Specialized code usually written by the user

e No need for a system which knows “more” than the user!

CAS on the market;

e Commercial: Mathematica, Maple, Reduce, ...

e Non-commercial: FORM, GiNaC, ...

Vermaseren; Bauer, Frink, Kreckel, Vollinga, ...



The amplitudes for e"e~ — 3jets at NNLO

A NNLO calculation of efe~ — 3jets requires the following amplitudes:

e Born amplitudes for e"e~ — 5jets:
F. Berends, W. Giele and H. Kuijf, 1989;
K. Hagiwara and D. Zeppenfeld, 1989.

e One-loop amplitudes for e"e~ — 4 jets:
Z. Bern, L. Dixon, D.A. Kosower and S.W., 1996;
J. Campbell, N. Glover and D. Miller, 1996.

e Two-loop amplitudes for e"e~ — 3jets:
L. Garland, T. Gehrmann, N. Glover, A. Koukoutsakis and E. Remiddi, 2002;
S. Moch, P. Uwer and S.W., 2002.



The calculation of two-loop integrals

Techniques to calculate two-loop integrals

— Mellin-Barnes transformation, smirnov 99, Tausk '99.

— Differential equations, Gehrmann, Remiddi ‘00.

— Nested sums, Moch, Uwer, S.W. ‘01.

— Sector decomposition (numerical), Binoth, Heinrich, '00.

Methods to reduce the work-load:

— Integration-by-parts, chetyrkin, Kataev, Tkachov ‘81.
— Reduction algorithms, Tarasov ‘96, Laporta '01.
— Cut technique Bern, Dixon, Kosower, '00



The double-box integral

Two-loop amplitudes for 2 — 2 processes involve the double-box integral:

e First calculated by Smirnov (planar) and Tausk (non-planar) in 1999.
e Calculation based on Mellin-Barnes representation.

e Result expressed in harmonic polylogarithms.

Xi1 S
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Multiple polylogarithms

Definition:
i1 2 %
Li (Xg, .oy Xk) = %
Mmq,...,Mg 1y---9 2K - imlimz...,mk.
i1>i>..>)>0"1 "2 e

(Goncharov; Borwein, Bradley, Broadhurst and Lisonek)

Special subsets: Harmonic polylogs, Nielsen polylogs, classical polylogs

(Remiddi and Vermaseren, Gehrmann and Remiddi).
Have also an integral representation.
Obey two Hopf algebras (moch, uwer, s.w.).

Can be evaluated numerically for all complex values of the arguments
(Gehrmann and Remiddi, Vollinga and S.W.).



Infrared divergences and the Kinoshita-Lee-Nauenberg the orem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.

unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



The subtraction method

The NLO cross section is rewritten as
o"° = [do"+ [do¥ = [ (do"-do?)+ [ |do'+ [do*
n+1 n n+1 n 1

The approximation do” has to fulfill the following requirements:

e do” must be a proper approximation of do” such as to have the same pointwise

singular behaviour as doR itself.
Thus, do” acts as a local counterterm for do®.

e Analytic integrability over the one-parton subspace leading to soft and collinear
divergences.

Catani, Seymour, '96



An example involving double unresolved configurations

The leading-colour contributions to e"e~ — qg. E%
3

Double unresolved configurations:

Pa
- Two pairs of separately collinear particles
- Three particles collinear %
- Two particles collinear and a third soft particle
- Two soft particles Ps
- Coplanar degeneracy P4
Single unresolved configurations: B%

- Two collinear particles .
- One soft particle B4



The subtraction method at NNLO

e Singular behaviour

— Factorization of tree amplitudes in double unresolved limits, Berends, Giele, Cambell,
Glover, Catani, Grazzini, Del Duca, Frizzo, Maltoni, Kosower '99
— Factorization of one-loop amplitudes in single unresolved limits, Bern, Del Duca, Kilgore,

Schmidt, Kosower, Uwer, Catani, Grazzini, '99

e Extension of the subtraction method to NNLO Kosower; S.W.; Kilgore; Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich; Frixione, Grazzini; Somogyi, Trocsanyi and Del Duca,;
e Cancellation based on sector decomposition Anastasiou, Melnikov, Petriello; Heinrich;

e Applications:

- PP— W, Anastasiou, Dixon, Melnikov, Petriello '03,

— p p — H , Anastasiou, Dixon, Melnikov, Petriello ‘05, Catani, Grazzini ‘08

— €7@ — 2 jets, Anastasiou, Melnikov, Petriello '04, S.W. '06

— e+e‘ — 3 jets, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich '07, S.W. '08



Antenna subtraction terms at NNLO
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Gehrmann-De Ridder, Gehrmann, Glover, '05
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ete” — 3jets at NNLO

Fully differential Monte-Carlo programs for 3-jet observables at NNLO:

e EERADS3
Gehrmann-De Ridder, Gehrmann, Glover, Heinrich,
Phys.Rev.Lett.99:132002,2007,
Phys.Rev.Lett.100:172001,2008

e MERCUTIOZ2
S.W,,
Phys.Rev.Lett.101:162001,2008



Soft gluons

4 partons: S partons:
| Gluon | soft:

~
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Comparison with EERAD3

Thrust
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Results for the three-jet rate in electron-positron annihi lation

Durham three-jet rate
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S.W.,, Phys.Rev.Lett.101:162001,2008



Results for the thrust distribution

Thrust
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S.W.,, arxiv:0904.1077



Further refinements

Soft-gluon resummation: Perturbative expansion is of the form
1+ CoOls + €105 1N Yout + C201sIN Yo+ O(?)

In the region where O(SInzycut ~ 1 resum the large logarithms.
Catani, Trentadue, Turnock, Webber, '93; Becher, Schwartz, '08

Power corrections: From the operator product expansion we expect power corrections

of the form
A 1
()
Dokshitzer, Webber, '97; Davison, Webber, '08
Current world average:
as(mz) = 0.117620)

Particle Data Group, '08



Results for the thrust distribution

Changing the centre-of-mass energy:

Thrust,Q = 91.2GeV
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Summary

O is one of the fundamental parameters of nature
Error on g dominated by theory

NNLO calculations reduce the theoretical uncertainty
Re-analysis of JADE data, ...

Calculational techniques developed for e"e~ — 3jets can be applied to other
processes



