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Factorization

QCD: Fundamental microscopic theory of strong
interactions.

Asymptotic Freedom: Over short distances, strong
coupling Is small:

d~1/Q << 1/Agep == a,(Q?) <<1

Any collision with hadrons involves both long and
short distance scales.

Must be possible to systematically separate any QFT
calculation into large scale and short scale pieces.



Classic Case: DIS
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Factorization

e Statement of a factorization theorem.

o=Cx [ +0((A/Q) o)) a>0
T

Hard scattering Universal parton Power suppressed
coefficient distribution function corrections

(A parton correlation function)



In This Talk:

Very careful review of standard parton model kinematics in
DIS — back to basics.

Argue for a more general treatment of factorization.

Overview of a factorization formalism that maintains exact
overall kinematics.

Main complications and unsolved problems.

Relation to parton showers, resummation, etc... ?



Types of PDFs

DIS — Naive Handbag Diagram

k= (kT,k k)

— 1,

~Q ~A/Q ~A

 What should be used for k in hard scattering?

— Can categorize level of approximation by the type of
PDF that is used.



Types of PDFs

Integrated PDFs:

— Standard x-dependent PDFs - k; and k? are integrated over in the
definition.

— Well-known operator definitions of classic factorization theorems.

Unintegrated PDFs:

— Depend on k, but still integrated over invariant energy.

— Some open problems with operator definitions, and problems with
factorization in hadron-hadron collisions.

Parton Correlation Functions (Including Fully
Unintegrated PDFs):
— Differential in all components of four-momentum.

— Refers to fully unintegrated PDFs as well as jet-factors, and soft
factors.



Unapproximated LO graph

(Additional soft/collinear gluons to be considered later.)
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How to go from this to the parton model?



Reproducing the basic parton model:

Utilize parton model kinematics:
- k= (k",k" ,kp)

= U=k+q= (k" —aP", 3% + k7 kr)

— small /2 means kt =~ z Pt

Inside target bubble write: k& — (2P, k™, k7)

inside the jet bubble write: 1 — (1, , %, 0r)

Use parton model values in_hard vertex

"k — k= («P",0,07)
- Q?
[ = | = (0" 20 P77 OT)

Keep only large Dirac matrices.



Reproducing the basic parton model:

Set to one by

» Hadronic Tensor Becomes: unitarity:
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Parton Distribution??? structure functions.

- UV divergent — requires o _ .
renormalization. Note shift in final state kinematics !!

- Wilson lines needed for gauge invariance. 10



The Standard PDF

Operator definition: (Reproduces integral form up to c.t.)
dw™ —xB;p W s — 4l +17
filwpj,p) = e plv(0,w™,07)V, (wy)y" Vo (us)¥(0)|p) R

Uy = (Oﬁ L OT)
Light-like Wilson lines for gauge invariance:

Vi (n) = Pexp(—’ig/ dAn - A(w + ,\n))
0

Vi (u3)Vo(uy) = Pexp (—ég/ d\us - A(A*u;))
0




How good Is standard approx?

Example: cc photoproduction
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Target Parton = Gluon %\ %

e Try:

— Keeping k; dependence, but approximating minus

component. (TMD PDFs)

— Exact kinematics. (Fully unintegrated PDFs)
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Errors In final state kinematics

CcC

Pair-production
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Standard Kinematical Approximations

Re-assignment of final state kinematics — mismatch

between true kinematics and parton model approximation.

Standard factorization works if we look at observables
Integrated over final state phase space.

Does not necessarily work point-by-point in phase space.
In some cases, exact kinematics are needed.

What about factorization?

— Need a factorization formula that is accurate point  -by-point in
Initial/final state momentum.
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Proposal:

Set up new factorization with subtraction formalism using
exact over-all kinematics of initial and final states.

Basic Approach Formalized in: Collins Phys.Rev.D65:094016,2002,
Collins, Zu, JHEP 03 (2005) 059

Maintain explicit factors for final states.

Non-perturbative factors should depend on all components
of four-momentum. (Fully unintegrated parton correlation
functions.)

(PDFs, jet factors, soft factors)

New approach to factorization is needed. y



What i1s needed for factorization?

General factorization formula with power suppressed
corrections point-by-point in final state phase space.

Well-defined operator definitions for PCFs. Needed for
universality.

Hard scattering matrix calculated with on-shell Feynman
graphs.

Higher orders rely on subtractive formalism — detailed
treatment of lowest order hard scattering needed as a first

step.
16



General Graphical Structure

(From Collins, TCR, Stasto, PRD77:085009,2008)

N

Should start with:

Must disentangle soft and collinear gluons to get

topological factorization... .



Graphical example:
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Topological Factorization:

Also need
double counting
subtractions.

A formula of
this type is the
goal.

u c=CQF®J®S+0((AQ)"]), a>0
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Full Factorization
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Summary so far

Looking at detalls of final states requires precise
treatment of kinematics.

Full factorization for scalar theory.

Detailed treatment of factorization for the case
of a single outgoing jet.

Derived formula using candidate operator
definitions for the PCFs.

Account for arbitrary number of gluon
exchanges (in the Abelian case).
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Fully Unintegrated Approach

Advantages

Generality.

Needed for complicated events
and for details of final states.

Hard scattering is an ordinary
function — not generalized
function (e.g. delta-
functions/plus-distribution).

Starting point to address
complications with
unintegrated PDFs.

Disadvantages

Very complicated — much
theoretical work is still needed.

PCFs depend on too many
parameters. Difficult to use for
practical applications.

Complications with ward
identities for non-Abelian
gauge theory
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Next-to-leading order

With the detailed treatment of LO, can obtain NLO
expression directly via subtraction formalism — we now
know exactly what to subtract.

Double counting subtractions should give factorized
expression with power suppressed corrections point-by-
point in phase.

Explicit mapping from exact to approximate momentum
variables is needed. It should be chosen consistent with
point-by-point factorization.

For now get NLO hard scattering g-gbar production

graphs.
(TCR, PRD78:074018,2008)
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Higher Order Hard Scattering

(Overview of subtraction approach)

« EXxplicit implementation of subtractive formalism:
¢?6) - Scalar theory

\#/

SN

[ =Trol + O((A/Q)T) + O(as(Q?))




Higher Order Hard Scattering

« Mapping of exact to approximate momentum variables:

Jet function
[ A; A
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k= (xpPt,0,0); 1=(0,q,0)

>~ PDF

o~ C®F(k,P)® Jy(l)
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Higher Order Hard Scattering

e Error in LO calculation:

- O -y

-

-

['=Trol + (T — Trol)
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Non-vanishing for wide angles.




NLO Hard Scattering

o Apply approximation appropriate for wide-angle regime:

PN

PN

I =Trol' + Tnpo(T — Trol') + O((A/Q)T) + O(as(Q?)?)

N
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Calculate error term using approximation appropriate for wide angles.
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NLO Hard Scattering
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NLO Hard Scattering

Structure of fully unintegrated hard scattering coefficient:
layered approximations.
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NLO Hard Scattering

Explicit expressions have been obtained for including crossed
diagrams and antiquark target.

Mapping from exact to approximate variables in wide angle
region:

~ [%t igf
P — + E . L 1
k={-¢"+—=+-=.0,0 L=l —k/2
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Open problems / future work

Evolution equations?
— Relation to CSS formalism?
— Parton Showering

Recovery of other approaches in appropriate limits? (e.q.
BFKL, CCFM, etc...)

Extension to other NLO processes.
Non-Abelian Ward identities?

Hadron-Hadron collisions?
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