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Motivation

We want and need matching/merging ...

Most easily done with showers

→ being hardness ordered

→ using local (i.e. per-splitting) recoils.



Motivation

Progress is being made to systematically correct showers order by
order to the exact prediction.

In principle we could get rid of all (ambiguous) approximations,
having confidence in being correct to some specific order in αs .

So we take the most convenient shower.

Should we care about anything downstream?



Motivation

We do need confidence in the shower.

Is there a shower which performs properly while having all ’nice’
features?

Rethink dipole-type showers.



Motivation

Anomalous dimensions?

Effects of finite recoils?

p⊥ from initial state radiation?



Outline

Recoil strategy, and soft correctness.

A form factor analysis: Soft double counting and angular ordering.

Another way to remove soft double counting.

Scale choices and ordering.

Implementation.

Conclusions.

Not talking about:
Calculational frameworks and matching approaches.



Recoil strategy.

Introduce local recoils: Dipole-type picture as minimal case.

Recap derivation of (unregularized) DGLAP kernels.

z = n·qi
n·pij

, axial gauge n · A = 0

→ Remaining gauge dof is rescaling the collinear direction n

Physical gauge(s): Choose any possible spectator momentum
n = pk .

→ Interferences supressed.

→ Singular behaviour from cut self-energies only.

The singular behaviour is invariant under rescaling the spectator
momentum.



Recoil strategy: final state radiation

Extend the underlying Sudakov kinematics to exact momentum
conservation.

Spectator takes longitudinal recoil of the splitting.

Collinear limit is the kinematics used in Herwig++ [Gieseke,Stephens,Webber]

Otherwise inverse of final state Catani-Seymour tilde kinematics.

→ Compatible with framework of physical gauge(s).

→ Producing the correct soft behaviour in the splitting function.

Interested in soft gluons, so g → qq̄ neglected from now on.



Soft correctness: The DGLAP case.

Using the physical gauge and recoil outlined above observe:

Pi→i ,g (z)

2qi · qg

∣∣∣∣
n=pk

= (eikonal) + (collinear singular)

Indeed, using the usual colour algebra (and proper symmetry factor
for g → gg):

At leading order in αs collinear factorization in physical gauge(s) is
soft correct. Pi→ig |n=pk

generates the complete soft behaviour for
the i , k dipole.

If the correct soft behaviour would guarantee coherence, then any
such DGLAP shower would be fine.



Soft correctness: The DGLAP case.

Recall the (dipole) form factor and anomalous dimensions from
coherent branching: [Bassetto,Ciafaloni,Marchesini,Dokshitzer,Turnock,Webber,...]
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Soft correctness ; coherence.

Check the anomalous dimensions including recoil effects:
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Choose kinematical limits from restricting the emitter’s virtuality
(as would be the choice for virtuality or p⊥ ordering):
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→ Leading logs screwed up.

→ Recoils enter at NLL level.



Soft double counting.
Choosing a phasespace restriction as for an angular ordered
shower, get the correct ones.

→ Double counting of soft emissions for virtuality cutoff.

→ Not present for the angular ordered phasespace.
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Another way to remove
soft double counting.

→ Partial fraction the eikonal in the usual way.

pi · pj

pi · q pj · q →
pi · pj

pi · q (pi + pj) · q
→ Need to have overlapping phasespace regions.

→ Minimal prescription to remove soft double counting.

→ Construction prescription for Catani-Seymour kernels.

No need for more complicated versions. If singular limits are
correct, differences can only appear in finite terms.



Initial state radiation.

Taking CS literally for initial state radiation has shortcomings.

Most prominent:

→ Final state colour singlets get p⊥ from the very first initial
state emission only.

→ An initial-initial dipole has the spectator completely
unchanged.

We seek a way to completely treat initial and final state radition
on equal footing (∼ crossing).

If the final state radiation behaves properly, we conjecture that the
initial state radiation does as well.



Initial state radiation.
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pi → -p+

z → 1/z

Exact phasespace factorization still possible.



Initial state radiation.

Allow each emission to generate intial state p⊥.

Uppon termination of the cascade apply a boost for each incoming
parton to realign it to the beam axis, while leaving the other one
invariant.

As the kinematics are exact in each evolution step, this preserves
the interesting features of the final state system while properly
generating transverse momentum.

We do not boost a subset of the collision system. These are global
Lorentz transformations.



Structure of splitting kernels.

Get universal structure of splitting kernels.

DGLAP 0← p⊥ Split eikonal + recoil
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Structure of splitting kernels.

Finite recoils supress hard emission either through phasespace or
spectator PDF change.

We think this is an important feature, as a similar mechanism is
present in angular ordered showers through the phasespace
restriction.

Taking CS literally, this would not happen for an initial-initial
dipole.



Form factor analysis repeated.

Phasespace overlap in soft region required (as opposed to
DGLAP).

Find the correct anomalous dimensions with Q2 → sik :
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Consequence of the screening of soft singularities at fixed p⊥.



Some conclusions.

It is the phasespace restriction when evolving between two scales
which determines the form factor.

→ Needs to be chosen appropriate. Choice can be related to the
absence of soft double counting with given kernels.

Whatever appears as the hard scale in the anomalous dimensions is
to be chosen as the hard scale for the evolution.

→ Invariant mass or −t for split-eikonal kernels.

No conclusions can be drawn what ordering to chose.

→ Did look at zero or one emission so far.



Multiple emissions and ordering.

I do believe that exponentiation of leading logs is an important
requirement.

It should be this property, which fixes the proper ordering.

Form factor analysis suggests a p⊥ ordering, while allowing for
kinematically possible unordered emissions.

Analytical exponentiation studies not completed yet. Working on
all-orders treatment.

Numerical results do not show a significant difference between
allowing unordered emissions or imposing a strict p⊥ ordering.



Implementation and matching.

Implementation of the shower outlined above in place.

→ Add-on to Herwig++

→ Fairly general. Could also switch to taking CS literally.

Automatized POWHEG-type matching to NLO QCD.

→ MC@NLO variant also possible

Working horse: exsample

→ Adaptive sampling with on-the-fly unweighting.

→ Crucial feature: Can deal with Sudakov-type distributions



Sudakov-type distributions.
Adaptive version of the veto algorithm to sample densities of the
type

Ff (x |y ,~z) = θ(y − x)f (x ,~z) exp

(∫ y

x
dt

∫
V

dV (~ξ)f (t, ~ξ)

)
knowing f only numerically.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dP
/
dq

q

sampled
analytic

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dP
/
d(

1
−

z
)

1− z

sampled
analytic

1



Example parton level results
Preliminary. Hadronization, detailed studies, hadron-hadron and
more processes on the way.
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Conclusions.

We do need to care about parton showers in a detailed manner.
The techniques and possible pitfalls are known for more than 30
years.

Working under the premise of ’anything improvable up to some
order’ is a fixed-order statement. Parton showers are not
fixed-order objects.

With some improvements CS-type showers indeed seem to work
properly, while having all the nice features to do matching.

We have completely implemented a modified version along with
automatized NLO matching.


