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Electron density
Fourier pair of equations:

Fhkl = V ∫xyz r(xyz) exp[2πi·(hx + ky + lz)] dxdydz
r(xyz) = 1/V ∑hkl |Fhkl| exp[-2πi·(hx + ky + lz) + ia(hkl)]

For Fhkl and Fhkl the amplitudes are the same but the
phase angles are of opposite value: so-called Friedel or 
Bijvoet pairs. The electron density equation reduces to:

r(xyz) = 1/V|F000| + 2/V ∑+hkl |Fhkl| cos[2π·(hx + ky + lz) - ahkl]

* Note that  eix = cos(x) + isin(x).



r(xyz) = 1/V|F000| + 2/V∑+h∑k∑l |Fhkl| cos[2π·(hx+ky+lz)-ahkl]

How to obtain information about a?

1) Isomorphous crystal structure  (difference-Fourier synthesis)
2) Molecular replacement technique (MR)
3) Multiple isomorphous replacement (MIR)
4) Multi-wavelength anomalous diffraction (MAD)
5) Ab initio

Crystallographic Phase Problem

)Patterson



• We can still calculate a Fourier summation with intensities as 
coefficients and all ahkl equal to zero, i.e. a Patterson map. 

• P(uvw) = 1/V·∑hkl |Fhkl|2·exp[-2πi·(hu+kv+lw)]

= 2/V·∑+hkl |Fhkl|2·cos[2π·(hu+kv+lw)]
P(u) = 2/V·∑S |FS|2·cos[2π·u·S]

is equivalent to
= ∫v r(xyz)·r(x+u y+v z+w) dV
= ∫r r(r)·r(r+u) dV

* Note that  eix = cos(x) + isin(x).

Patterson map



∫v r(x,y,z)·r(x+u,y+v,z+w)dV

Ori

r(xyz) P(uvw)
(0.1 0.5) (0.5 0.5)

(0.2 0.2)

Put each corner of the triangle (atoms of the structure) at the origin!



Calculate structure

1. In order to solve the 2D-structure, we must somehow combine the 6 interatomic 
vectors [ x1-x2 , x1-x3 , x2-x1 , x2-x3 , x3-x1 and x3-x2 ] with the coordinates of the 
peaks in the map [ (0.3 0.3) , (0.9 0.3) , (0.4 1.0) , (0.6 1.0) , (0.1 0.7) and (0.7 0.7) ].

2. Find a set of three representative equations and choose three peaks (sum equal to 0 
or n, remember periodicity):

x1-x2 =  (0.9 0.3)
x2-x3 =  (0.4 1.0)
x3-x1 =  (0.7 0.7)   +

0         2     2

3. With x1 (0 0) it follows that x2 (0.1 0.7). With x2 (0.1 0.7) it follows that x3 (0.7 0.7).
Finally, with x3 (0.7 0.7) it follows that x1 (0 0)! Indeed, our starting assumption. 
Remember periodicity: 0 ≡ 1  or  -0.3 ≡ 0.7!

Can be solved if we choose the origin! x1 = (0 0)



∫v ρ(x,y,z)ρ(x+u,y+v,z+w)dV

Ori

ρ(xyz)
(0.1 0.5) (0.5 0.5)

(0.2 0.2)

Original structure Calculated structure

Wrong handedness

Calculate structure



Consequences

• Only inter-atomic vectors in real space show up as peaks in 
Patterson space since P(uvw) = ∫v r(x,y,z)·r(x+u,y+v,z+w)dV

• The map of a real unit cell with N atoms will contain N2-N peaks 
in Patterson space outside the origin. Origin will contain N 
peaks.

• Patterson maps contain an additional symmetry element (centro-
symmetry).

• In simple structures with a limited number of atoms, the atomic 
positions can be derived fairly straightforward.

• You can obtain the inverted structure, going from L- to D-amino 
acids (due to centro-symmetry).

• The (correct) structure we obtain is exactly the same one but 
often with a different origin, e.g. structures with the same 
orientation but different origin give the same Patterson map.



Harker sections
Space group P21 (along y axis)

with operator 1 = (x, y, z) and operator 2 = (-x, y +1/2, -z)
and

vector 1-2 = (2x, -1/2, 2z) and vector 2-1 = (-2x, 1/2, -2z)

Subtracting operator 2 from operator 1, will give a peak at (u, v, w) = 
(2x, 0.5, 2z) and the opposite direction yields the centro-symmetric 
peak, (u, v, w) = (-2x, 0.5, -2z).

Notice that the symmetry operator that takes all values of y and 
translates them half a cell along y makes it such that all non-origin 
peaks generated by crystallographic symmetry in P21 Patterson maps are 
at the v = 0.5 section.

These special symmetry related sections are called Harker sections.

These Harker sections are always the first sections examined in 
Patterson solutions.



Harker sections ; P212121

x,y,z
-x+0.5,-yz+0.5
-x, y+0.5,-z+0.5
x+0.5,-y+0.5,-z

http://research.uni-leipzig.de/straeter/practical/NTPDase2.html



Simple Fourier Synthesis

Homologous structures (variants and/or complexed with small 
compound) can be calculated straightforward only if space group 
and unit cell dimensions are equivalent (so-called isomorphous!).

PDB file (atomic coordinates, e.g. electron density distribution)
F(hkl) = V ∫x ∫y ∫z rmodel(xyz) exp[2πi·(hx + ky + lz)] dxdydz

ßß
|Fmodel(hkl)|  and amodel(hkl)

ßß
Combine amodel(hkl) with |Fobserved(hkl)|

ßß
r(xyz) = 1/V|F000| + 2/V∑+hkl |Fo(hkl)| cos[2π·(hx+ky+lz)-am(hkl)]

Fourier synthesis

Fourier analysis



Molecular replacement

What if we do not have an isomorphous 
structure? Does it help if a homologous 
structure were available?
Yes! We can apply the „molecular 
replacement“ technique that is based on 
Patterson approach. In this way we create an 
isomorphous structure ourselves.



Molecular replacement: Rotation

P(uvw)r(xyz)

Search modelUnknown

r(xyz)P(uvw)

• Superimpose (rotate and translate) the search model.
• Calculate Fc(hkl) and ac(hkl) from the superimposed structure.
• Combine ac(hkl) and Fo(hkl), calculate r(xyz) and start model

refinement cycles.

?



Molecular replacement: Rotation



• An overlap function R of P(u) with the rotated 
version, Pr(ur), of the same crystal lattice (self-
rotation function) or a different crystal lattice 
(cross-rotation function) is defined as

R(a,b,g)= ∫u P(u)·Pr(ur)dv

• The function R depends on the rotation angles and 
will be maximal for the correct overlap!

Molecular replacement: Rotation



Eularian angles a, b and g
Rossmann & Blow, 1962:
1. rot. by a around Z
2. rot. by b around new X’
3. rot. by g around new Z’

Machin, 1985:
2. rot. by b around new Y’

Symmetry of rotation function clearly shows up.

Molecular Replacement



Polar angles c, w and f

1. rot. by f (phi) around Z
2. w (omega) is angle between 

ZOZ‘ in plane ZOX’
3. rot. by c (chi) around new Z’

Convenient for self-rotation function (c can be 
restricted to 120º or 180º).

Z‘

Molecular Replacement



Molecular replacement: Rotation

Fhkl = V ∫xyz r(xyz) exp[2πi·(hx + ky + lz)] dvFhkl = √ Ihkl



After the rotation, we must perform a translation by simple trial and 
error. The known molecule is moved through the asymmetric unit 
and structure factors are calculated and compared with the 
observed structure factors (Fobs) by calculating the R-factor

R = ∑hkl ( | Fobs | - k·| Fcal | ) / ∑hkl | Fobs |        (k = scaling factor)

or correlation coefficient

C = { ∑hkl ( | Fobs |2 - < Fobs >2 ) · ( | Fcal |2 - < Fcal >2 ) } /
{ ∑hkl ( | Fobs |2 - < Fobs >2 )2 · ( | Fcal |2 - < Fcal >2 )2}-1/2

with C being scaling insensitive.

Molecular replacement: Translation



• Molecular replacement is a rotation and translation problem, 
e.g. maximization of overlap function R(abg) and 
minimization of Rcryst :
1) R(abg) = ∫u P(u)·Pr(ur) dv     (self- or cross-rotation)
2) Rcryst = ∑hkl (|Fobs| - k·|Fcal|) / ∑hkl |Fobs|    (translation).

• Contains inter- and intra-molecular atom difference vectors. 
Best to restrict the length of vector u to 2/3 to 3/4 of the 
molecule diameter.

• Low resolution data are rather insensitive to rotation and can 
be left out and high resolution data are more sensitive for the 
model. Best range between 3.5 and 6-8 Å.

• Beware, bias originating from the search model is introduced 
into the newly calculated structure!

Molecular replacement: Consequences



Prepare isomorphous heavy atom containing derivatives of the 
protein in the crystalline state. Collect a full dataset of the 
derivative crystal.

Calculate P(uvw) = 1/V·∑hkl (|FPH| - |FP|)2·cos[2π·(hu+kv+lw)] 
and determine (|FH|) and phases (aH).

Can one heavy atom change the protein intensities? In principle 
yes: suppose we have a 42 kDa protein with 3000 non-
hydrogen atoms

<|FP|> ≈ 7·√3000 ≈ 383 (Average electrons C, N, O = 7)
<|FH|> = 80 for Hg
<|FH|>/<|FP|> ≈ 1/4 although Mr(heavy)/Mr(protein) ≈ 0.21%

Multiple Isomorphous Replacement



Tantalumbromide cluster

Heavy enough for ribosomes (2.5 MDa)



Native Band Gel-Shift Assay



FPH = FP + FH

= +

Fhkl = ∫x ∫y ∫z {ρph(x,y,z)}·exp[2πi·(hx+ky+lz)]·dxdydz
= ∫x ∫y ∫z {ρp(x,y,z) + ρh(x,y,z)}·exp[2πi·(hx+ky+lz)]·dxdydz

P(uvw)= 1/V·∑hkl (|Fph|-|Fp|)2·exp[-2πi·(hu+kv+lw)]



Cosine rule c2 = a2 + b2 - 2ab·cos(g)
cos(g) = - (c2-a2-b2) / 2ab
g = (180º - aH) + aP

FPH = FP + FH



∣Fp∣

∣Fph∣

Fh

Vector Fh can be determined by Patterson map analysis

FPH = FP + FH ; 2 solutions



27

FPH = FP + FH
|FP|

|FPH1|

|FPH2|

cos(180º + ap – ah) = - cos (ap - ah) =
- (|Fph|2 - |Fp|2 – |Fh|2) / 2·|Fp|·|Fh|

ap= ah + arc cos(|Fph|2-|Fp|2-
|Fh|2)/2(|Fp||Fh|)

Two solutions for one derivative!
More derivatives will solve this ambiguous result.

FPH = FP + FH ; Harker construction
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Difference Patterson
P(uvw) = 1/V· ∑hkl |Fhkl|·exp[-2πi·(hu+kv+lw)]

P(uvw) = 1/V·∑hkl (|Fph| - |Fp|)2·cos[2π·(hu+kv+lw)]

|Fph| = |Fp| + |Fh|·cos(ah – ap) + d but if     |Fh| << |Fp| than d ≈ 0
(d for difference, in crystallography also termed e as we shall see later)

With (|Fph| - |Fp|)2 = |Fh|2·cos(ah – ap) and <cos2(a)> ≈ 0.5
it can be seen that the difference Patterson is nothing else than a pure
heavy atom Patterson on half the scale!

Fp

Fph
Fh



• In practice when you have found the phases experimentally there is 
some mismatch:  
• The mismatch is called the lack of closure & is given the symbol e.
• From the mismatch you can estimate the phasing power  
Phasing Power = √( S |FH|2 / S e2)
• A phasing power of 4 is excellent but rare
• A value between 1 & 2 is acceptable & means that the scattering of 
the heavy-atom is larger than the lack of closure.

e = |FH(h) + FP(h)| - |FPH(h)|

FPH = FP + FH ; Lack of closure



http://bl831.als.lbl.gov/~jamesh/movies/
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http://www.ysbl.york.ac.uk/~cowtan/fourier/duck1.html

Fcat + acat

Fduck + aduck

Fcat + aduck

Fduck + acat

|F(hkl)| versus a(hkl)


