Dark Matter

Céline Boehm

IPPP, Durham

DESY, Oct 2017

Recap of previous lecture

There is a halo of dark matter all around us

Galactic Dark Matter

What is the halo made of?

Is the dark matter made of compact objects?

EROS and MACHO

(La Silla vs Mount Stromlo Observatory, Australia)

Earth $3 \ 10^{-6} \ M_{\odot}$ Jupiter $\simeq \ 10^{-3} \ M_{\odot}$ Pluto $\simeq 6 \ 10^{-8} \ M_{\odot}$

MACHO fraction < 10%

Fig. 3.— Halo fraction upper limit (95% c.l.) versus lens mass for the five EROS models (top) and the eight MACHO models (bottom). The line coding is the same as in Figure 2.

Anisotropies of temperature $\overline{T} = 2.7K$

 $\frac{\delta T}{T} \simeq 10^{-5}$

The higher l, the more details you get

l > 2000

No large-scale fluctuations if "baryons" dominate the matter density

Therefore there must be more dark matter than baryons

Planck Collaboration: The Planck mission

the suppression of small-scales is indicative of the presence of baryons

Planck Collaboration: The Planck mission

II. Candidates

- * **Primordial Black Holes**
- * **Modified gravity**
- * **Particles (Relic density)**

II. A. Primordial Black Holes

Can Primordial Black Holes be the DMP

Can Primordial Black Holes be the DM? Theia (optical) Small-Jasmine (IR)

Fig. 2.8: Projected sensitivity of *Theia* to the fraction of dark matter in the form of ultracompact minihalos (UCMHs) of mass M_i at the time of matter-radiation equality. Smaller masses probe smaller scales, which correspond to earlier formation times (and therefore to *later* stages of inflation). A UCMH mass of 0.1 M_{\odot} corresponds to a scale of just 700 pc. Expected constraints from *Gaia* are given for comparison, showing that *Theia* will provide much stronger sensitivity, as well as probe smaller scales and earlier formation times than ever reached before.

II. B. Modified gravity

One possible theory : TeVeS (baryons only)

Bekenstein astro-ph/0403694

II. C. Particles

Weakly interacting

Why 27%?

How many DM particles were produced in the Early Universe?

How much should there be today if DM was made of particles?

Does it match observations?

For the "baryons"

Thermal production

$$e^+e^- \to \gamma\gamma$$

 $\sigma_T \sim 6 \ 10^{-25} \ \mathrm{cm}^2$

The annihilation process is so efficient that there would be no electrons left at all

Asymmetry

For the Dark Matter

Thermal production but ...

No asymmetry! but ...

non-thermal,freeze-in

Massive DM particles can overclose the Universe!

The Boltzmann equation

Deriving the Boltzmann equation

 (2π)

Deriving the Boltzmann equation

$$\frac{\partial n}{\partial t} + 3Hn = \frac{g}{(2\pi)^3} \int \frac{1}{E} C(f) d^3 p.$$

annihilations; change the number density

elastic scattering; do not change density

$$\begin{array}{ccc} DM \ DM \rightarrow f \ \overline{f} \\ f \ \overline{f} \rightarrow DM \ DM \end{array} & DM \ DM \rightarrow f \ \overline{f} \\ \end{array}$$

$$\begin{array}{ccc} Non-relativistic transition \end{array} \qquad \text{expansion won} \end{array} \quad \text{time} \end{array}$$

$$C(f) = -\frac{1}{2} \sum_{spins} \int \left[f f_2 \left(1 \pm f_3 \right) \left(1 \pm f_4 \right) \left| \mathcal{M}_{12 \to 34} \right|^2 - f_3 f_4 \left(1 \pm f \right) \left(1 \pm f_2 \right) \left| \mathcal{M}_{34 \to 12} \right|^2 \right] \right]$$
$$(2\pi)^4 \delta^4 \left(p + p_2 - p_3 - p_4 \right) \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4}$$

$$\dot{n} = -3Hn - \langle \sigma v \rangle \left(n^2 - n_{eq}^2 \right)$$

Boltzmann equation caught in the act

Boltzmann equation caught in the act

number of particles

Only one cross section gives the observed number of DM particles!

Interactions maintaining the thermal equilibrium can continue

$$\frac{dn}{dt} = -3Hn - \sigma v (n^2 - n_0^2)$$

$$\sigma v \ n_{DM}^2 \simeq H \ n_{DM} \longrightarrow \sigma v \ n_{DM} \simeq H$$

Analytical solution

At freeze-out, the density obeys Boltzmann statistics

$$n(T) \propto (m_{\rm DM}T)^{3/2} e^{-\frac{m_{\rm DM}}{T}} \qquad n_{\rm DM,0} = \frac{H_r}{\langle \sigma v \rangle} \frac{T_0}{T_{fo}} \qquad x_{fo}^{-1} \simeq \ln \frac{\langle \sigma v \rangle}{H_\alpha} \frac{T_0^2 m}{(2\pi)^{3/2} \sqrt{x_{fo}}}.$$
$$x_{fo} \approx 12 + (\approx 2) \log \left(\frac{m_{dm}}{MeV} \times \frac{\sigma v}{3.10^{-26} cm^3 / s}\right)$$

Numerical solution

Numerically: re-write Boltzmann to remove T³ factors in number density by using n = y T³ $\frac{dy}{dt} = -\sigma v \times (y^2 - y_0^2) \times T^3$ solve dy/dT instead of dy/dt $\frac{y_{i+1} - y_i}{\Delta T} = \Lambda \times (y^2 \frac{dy}{dTy_0^2}) \frac{\sigma v}{2t_r T_0^2} \times (y^2 - y_0^2)$

Tempted to use:

$$\frac{y_{i+1} - y_i}{\Delta T} = \Lambda \times (y^2 - y_0^2)$$
???

$$\frac{y_{i+1} - y_i}{\Delta T} = \frac{\Lambda}{2} \times \left[(y_i^2 - y_{0_i}^2) + (y_{i+1}^2 - y_{0_{i+1}}^2) \right]$$

The Hut, Lee&Weinberg argument

Can we have light thermal DM? **10! (well...)**

$$\frac{dn}{dt} = -3Hn - \sigma v (n^2 - n_0^2)$$

$$\Omega h^2 \simeq \frac{3 \times 10^{-27} \text{cm}^3/\text{s}}{\langle \sigma v \rangle}$$

$$\sigma v \sim 3 \ 10^{-26} \ \mathrm{cm}^3/\mathrm{s}$$

Particle physics examples

The supersymmetric case

N=1 : 1 operator of supersymmetry Each operator change the spin of particles by 1/2 SUSY operator applied on SM spectrum leads to new particles with different spin

~ double SM spectrum

- + SM fermions + spin-0 particles sfermions
- + Higgs/Gauge boson spin-1/2 particles fermions neutralinos

R-parity

Initial realisation: all masses the same as SM

Nothing at LEP, LHC so masses can't be the same!

The supersymmetric case

SUSY

Supersymmetric and relic density

Nucl.Phys. B237 (1984) 285-306

Phys.Rev. D43 (1991) 3191-3203

Coannihilations

$$\frac{dn_{i}}{dt} = -3Hn_{i} - \sigma v_{ann} \left(n_{i}^{2} - n_{i,0}^{2}\right) - \sigma v_{co-ann} \left(n_{i}n_{j} - n_{i,0}n_{j,0}\right)$$

$$\frac{dn_{j}}{dt} = -3Hn_{j} - \sigma v_{ann} \left(n_{j}^{2} - n_{j,0}^{2}\right) - \sigma v_{co-ann} \left(n_{i}n_{j} - n_{i,0}n_{j,0}\right) - \Gamma_{j} \left(n_{j} - n_{j,0}\right)$$

$$\frac{\Gamma_{ann}}{\Gamma_{coann}} = \frac{\langle \sigma v \rangle_{ann}}{\langle \sigma v \rangle_{coa}} \frac{n_1}{n_2}$$
$$= \frac{\langle \sigma v \rangle_{ann}}{\langle \sigma v \rangle_{coa}} \frac{m_{d_1}}{m_{d_2}} e^{-\beta(m_{d_2} - m_{d_1})}$$

The mass difference is critical

Neutralino relic abundance?

hep-ph/9911496

DM co-annihilations with "stops"

The resonance implies smaller couplings are needed for the neutrinos to be the DM

SUSY survival mode

10. The last refuge of mixed wino-Higgsino dark matter

Martin Beneke (Munich, Tech. U.), Aoife Bharucha (Marseille, CPT), Andrzej Hryczuk (Oslo U. & Warsaw, Inst. Nucl. Studies), Stefan Recksiegel (Munich, Tech. U.), Pedro Ruiz-Fernenia (Madrid, Autonoma U. & Munich, Tech. U. & Madrid, IFT). Nov 2, 2016. 30 pp. Fublished in JHEP 1701 (2017) 002 TUM-HEP-1065-16. FTUAM-16-38, IFT-UAM-CSIC-16-106 DOI: 10.1007/JHEP01(2017)002 e-Print: arXiv:1611.00804 [hep-ph] | PDF References | BIbTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; Link to Article from SCOAP3 Detailed record - Clied by 5 records

11. Very Degenerate Higgsino Dark Matter

Eung Jin Chun (Korea Inst. Advanced Study, Seoul), Sunghoon Jung (SLAC & Santa Barbara, KITP), Jong-Chul Park (Chungnam Natl. U.). Jul 14, 2016. 19 pp. Published in JHEP 1701 (2017) 009 DOI: 10.1007/JHEP01(2017)009 e-Print: arXiv:1607.04288 [hep-ph] | PDF References LBihTeX LL aTeX(LIS) LL aTeX(EU) L Hapropac LEndNote

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 4 records

12. Light Higgsino Dark Matter from Non-thermal Cosmology

Luis Aparicio (ICTP, Trieste), Michele Cicoli (ICTP, Trieste & Bologna U. & INFN, Bologna), Bhaskar Dutta (TAMU, College Station), Francesco Mula (Bologna U. & INFN, Bologna), Fernando Quevedo (ICTP, Trieste & Cambridge U., DAMTP). Jun 30, 2016. 22 pp. Published in JHEP 1611 (2016) 038 DOI: 10.1007/JHEP11(2016)038 e-Print: arXiv:1607.00004 [hep-ph] | PDF References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 3 records

Remember discoveries are not easy ...

Particle physics examples

Beyond SUSY

Light Dark Matter

astro-ph/0208458v3 hep-ph/0305261

What kind of mediator?

DM can be light!

Searching for Z'/dark photons

Effects of Weakly Interacting Slim Particles in Cavities with a Moving Boundary Condition

Ariel Arza

May 10, 2017

e-Print: arXiv:1705.03906 [hep-ph] | PDF

T-channel mediators at LHC

first example of simplified models at LHC

0912.5373

The mediator can be produced through the exchange of DM

Ruled out (now) up to TeV

Another exception to Hut, Lee&Weinberg

Why not considering MeV, keV, eV etc DM??

Non-thermal DM candidates

III. Signatures

* Direct Detection * Indirect Detection * LHC

III. A. Direct detection

DM particles cross through the Earth

Principle of direct detection Make a detector, wait, hope for an interaction within

Assuming that

DM interacts with SM particles We are able to detect the interaction

What kind of signatures do we expect?

ionisation scintillation phonons heat

arXiv:1203.2566

+ many presentations

How do we know we have detected DM?

We **don't** know unless we understand the background sources!

No dark matter direct detection experiments in the Southern Hemisphere !

re of Excellence for ysics at the Terascale

XENON100 experiment now 1T and nT

Gas Xenon

Liquid Xenon

stron recombination is

S1 = primary scintillation signal

S2 = secondary scintillation signal (from the drift of electrons from ionised Xenon)

Xenon 10 (10 kg Xenon)

How do we separate DM from background?

collect ionisation charge signal+background

Where DM lies

Only way: rise time of events

Two phase noble gas TPC

Electron recombination is stronger for nuclear recoils

→ Electronic/nuclear recoil discrimination

Teresa Marrodán Undagoitia (UZH)

Dark Ma

One needs to measure Leff

