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Recap of previous lecture



Propagation of e± in the interstellar medium

Governed by energy losses and spatial diffusion

Radio observations ) magnetic halo or diffusion zone
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There is a halo of dark matter all around us
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What is the halo made of?

Galactic Dark Matter



EROS and MACHO
 (La Silla vs Mount Stromlo Observatory, Australia)

Is the dark matter made of compact objects?

Excluded!

Earth 3 10�6 M�

Jupiter ' 10�3 M�

' 6 10�8 M�PlutoSolar system  objects

MACHO fraction < 10%



Anisotropies of temperature

colder regions

hotter regions

T̄ = 2.7K

�T

T
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2003, WMAP



Y 0
0 = cst

Y 0
1 = cos ✓

Anisotropies of temperature

Y m
l

The higher l, the more details you get

l > 2000



No large-scale fluctuations if  “baryons” dominate the matter density

Anisotropies of temperature

Therefore there must be more dark matter than baryons

the red curve = baryons only …

scale of galaxies



the suppression of  small-scales is indicative of  the presence of  baryons

Anisotropies of temperature

e-photon interactions 
+ Dark Matter + DE
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…
scale of galaxies

Anisotropies of temperature

matter power spectrum

baryonic acoustic oscillations



II. Candidates

* Primordial Black Holes 
* Modified gravity 
* Particles (Relic density) 



II. A. Primordial Black Holes



arXiv:1603.00464

arXiv:1607.06077
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Can Primordial Black Holes be the DM?
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Fig. 9.— (left) Upper limits on the present abundance of PBHs. The thick lines are the results obtained in the present work. The solid
lines show the upper limits using WMAP3 data (CMB anisotropies) for two values of the black hole duty cycle fduty = 1 and 0.1. The
dashed lines show the limits using FIRAS data (CMB spectral distortions) at 95% and 68% confidence. The other lines refer to previous
upper limits from microlensing (EROS and MACHO experiments) and dynamical constraints (see introduction). (Right) Upper limits on
the abundance of PBHs at the epoch of their formation β as a function of their mass. We assume that the mass of PBHs is a fraction fHor
of the mass of the horizon at the epoch of their formation. The thick curves show the upper limits obtained in the present work and the
thin dotted curve are limits from the EROS collaboration (microlensing experiment).

Thompson scattering to τe ∼ 0.2. Since the scalar spec-
tral index ns and the amplitude of density fluctuations
As and σ8 are correlated to τe, their best fits also increase
to ns ∼ 1 and σ8 ∼ 0.9. PBHs in this mass range may be
produced in two-stage inflationary models designed to fit
the low WMAP quadrupole (Kawasaki et al. 2006). We
emphasize again that this effect is more general than the
specific case of PBHs discussed in this paper. Any mech-
anism or energy source that modifies the standard recom-
bination history may affect the estimate of cosmological
parameters in a way similar to that discussed here.

Our results are in contradiction with the suggestion
that MACHOs are PBHs with mass ∼ 0.1 − 1 M⊙ and
fpbh ∼ 0.2 (Alcock et al. 2000). Such a PBH population
would produce spectral distortions incompatible with FI-
RAS data.

The luminous QSOs found by SLOAN at z ∼ 6 are
thought to be powered by 108 − 109 M⊙ SMBHs. It
is difficult to produce such massive black holes starting
from small seeds by gas accretion because the age of the
universe at z = 6 is a few tens the Salpeter accretion
timescale. A few massive PBHs or numerous less mas-
sive PBHs may help explain the origin of SMBHs at high
redshift and in present day galaxies by producing rela-
tively massive “seeds”. Are the upper limits on the num-
ber of PBHs derived in this work compatible with this
scenario? The fraction of mass in SMBHs today is ap-
proximately Ωsmbh/Ωdm ∼ 2.13 × 10−5 (Gebhardt et al.
2000; Ricotti & Ostriker 2004). For PBHs with mass
> 1000 M⊙ we found fpbh = Ωpbh/Ωdm

<∼ 10−6/fduty.
Hence, assuming that only a fraction Fagn ≤ 1 of PBHs
is incorporated into SMBHs and grows by gas accre-
tion by a factor Xacc ≥ 1 we have: fpbhXaccFagn ∼
2 × 10−5 or XaccFagn

>∼ 20fduty. The most massive
PBHs have Fagn → 1 because they spiral in to the
centers of galaxies by dynamical friction on a shorter
timescale (tfric/tH(z) ∼ 0.02Mhalo(z)/Mpbh, where tH
is the Hubble time) and because they may accrete gas
more efficiently. Hence, for fduty ∼ 3% and Fagn = 1
we find Xacc

>∼ 1 indicating that even scenarios with
negligible mass accretion onto PBHs (i.e., only growth
through mergers) are consistent with the observed mass

in SMBHs today.
Less massive PBHs have lower probability for growing

to masses typical of SMBHs because the Bondi accretion
rate is ∝ M2. However, the upper limit on the abun-
dance of PBHs increases steeply with decreasing mass
for Mpbh < 1000 M⊙. Thus, although a smaller fraction
of the seed PBHs can grow substantially, the number of
seeds available can be much larger. PBHs with masses
smaller than 100 M⊙, assuming Bondi type accretion
from the ISM of a typical high-z galaxy, are unlikely to
accrete rapidly enough to grow to SMBH masses in less
than 1 Gyr, even if they constitute a few per cent of the
dark matter (Kuranov et al. 2007; Pelupessy et al. 2007;
Ricotti & Köckert 2007).

The increased fractional ionization of the cosmic gas
produced by non-standard recombination also increases
the primordial molecular hydrogen abundance to xH2

∼
10−4 − 10−5 after redshift z ∼ 100. This value is be-
tween ten and one hundred times larger than the stan-
dard value, xH2

∼ 10−6, obtained neglecting PBHs. The
increase of the cosmic Jeans mass due to X-ray heating
is negligible for models consistent with the CMB data.
Therefore, the formation rate of the first galaxies and
stars may be enhanced if a population of PBHs exists.
Several aspects of first-star and galaxy- formation physics
would be affected by the enhanced molecular fraction:
(i) the mass of the first stars may be reduced due to
formation of HD molecules (Nagakura & Omukai 2005);
(ii) the intergalactic medium would be optically thick
to H2 photo-dissociating radiation in the Lyman-Werner
bands, allowing molecular hydrogen to survive in the low
density IGM even at relatively low redshifts z ∼ 10− 15;
(iii) the epoch of domination of the first stars and galax-
ies would probably start earlier and perhaps last longer.
The number of first galaxies that remain completely dark
would be reduced. It is not obvious that the star forma-
tion efficiency and other internal properties of the first
galaxies would be affected because feedback effects such
as photo-evaporation from internal sources and SN ex-
plosions are probably dominant (Ricotti et al. 2002a,b).
We leave quantitative calculations on the impact of PBHs
on the formation of the first galaxies to a future work.

LIGO

arXiv:1612.05644
An ensemble of PBH in the 1-100 Msun range  

might be allowed.  

http://arxiv.org/abs/arXiv:1612.05644
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2 SCIENCE CASE

Fig. 2.7: Astrometric signatures in the proper motion along Galactic latitude of the perturbation of disc stars by a subhalo. The
left and right panels show lines of sight as a function of distance along the line of sight and time, for ` = �25� and ` = +25�
respectively for b = +2�. The color codes the time in Myr, red for times prior to the crossing of the plane by the satellite, blue
for later times. The green line is Gaia’s expected end of mission performance for a population of red clump stars along these
lines of sight. The vertical dashed line is Gaia’s detection limit (G=20) for the same population. The red lines are Theia’s
expected 1s accuracy for the same stars and for a 400 h exposure of the field over the course of the mission.

inflation that have dominated the theoretical landscape
for the past thirty years. Conversely, the absence of
UCMHs can be used to establish upper bounds on the
amplitude of the primordial power spectrum on small
scales (Bringmann et al. 2012), which would rule out
inflationary models that predict enhanced small-scale
structure (Aslanyan et al. 2016).

Like standard DM halos, UCMHs are too diffuse to be
detected by regular photometric microlensing searches
for MAssive Compact Halo Objects (MACHOs). Be-
cause they are far more compact than standard dark
matter halos, they however produce much stronger as-
trometric microlensing signatures (Li et al. 2012). By
searching for microlensing events due to UCMHs in the
Milky Way, Theia will provide a new probe of inflation.
A search for astrometric signatures of UCMHs in the
Gaia dataset could constrain the amplitude of the pri-
mordial power spectrum to be less than about 10�5 on
scales around 2 kpc (Li et al. 2012). Fig. 2.8 shows that
with its higher astrometric precision, Theia would pro-
vide more than an order of magnitude higher sensitivity
to UCMHs, and around four orders of magnitude greater
mass coverage than Gaia. These projections are based
on 8000 hr of observations of 10 fields in the Milky Way
disc, observed three times a year, assuming that the first
year of data is reserved for calibrating stellar proper mo-
tions against which to look for lensing perturbations.
Fig. 2.9 shows that Theia would test the primordial spec-

Fig. 2.8: Projected sensitivity of Theia to the fraction of dark
matter in the form of ultracompact minihalos (UCMHs) of
mass Mi at the time of matter-radiation equality. Smaller
masses probe smaller scales, which correspond to earlier for-
mation times (and therefore to later stages of inflation). A
UCMH mass of 0.1 M� corresponds to a scale of just 700 pc.
Expected constraints from Gaia are given for comparison,
showing that Theia will provide much stronger sensitivity, as
well as probe smaller scales and earlier formation times than
ever reached before.

trum of perturbations down to scales as small as 700 pc,
and improve on the expected limits from Gaia by over
an order of magnitude at larger scales.

The results will be independent of the DM nature, as
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II. B. Modified gravity



One possible theory : TeVeS (baryons only)  

astro-ph/0505519

Bekenstein  astro-ph/0403694

Relativistic (covariant) version of  MOND

you see the 
Silk damping in 

action

µ

✓
|~a|
a0

◆
~a = �r�

µ(x) = 1 if x > 1 µ(x) ' x if x < 1

http://arxiv.org/abs/astro-ph/0403694


II. C. Particles

matter gravity massive particles stable neutral not in atoms

long lifetime no electrical charge no strong force

Weakly interacting



Relic density

How many DM particles were produced in the Early Universe?

How much should there be today if DM was made of particles? 

Does it match observations?

Why 27%?



Relic density
For the “baryons”

For the Dark Matter

No asymmetry!

e+e� ! ��

�T ⇠ 6 10�25 cm2

The annihilation process is so efficient  
that there would be no electrons left at all Asymmetry

Thermal production

Thermal production but … non-thermal,freeze-in

but …



3 H

Expansion of the Universe

N = #/volume

Early Universe

Late Universe

just expansion, no DM physics

Massive DM particles can overclose the Universe! 

Relic density



3 H

Expansion of the Universe

N = #/volume

Early Universe

Late Universe

just expansion, no DM physics
3 H

Expansion of the Universe

N = #/volume

Number is reduced due to annihilations

Relic density

DM

DM
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The Boltzmann equation

Expansion of the Universe
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Introduction to DM physics: Deriving the Boltzmann equation

Time evolution of 
The number density

Interactions which change
the number density

number density of DM 

(#/V)

Expansion of the Universe

Time evolution of  
the number density Annihilations change  

the number density



Deriving the Boltzmann equation

2. Thermal history of Dark Matter 23

species number density n in a given spacetime and 4-momentum 8-dimensional infinitesimal
space (that we may take as the Universe and its configuration), as well as its pressure p and
energy density r with the useful relations

n =
Z

dn =
Z

f (x, p)
gd3 p
(2p)3 =

g
(2p)3

Z
f (x, p)d3 p, (2.1)

p =
Z

d p =
Z |~p|2

3E
f (x, p)

gd3 p
(2p)3 =

g
(2p)3

Z |~p|2

3E
f (x, p)d3 p,

r =
Z

dr =
Z

E f (x, p)
gd3 p
(2p)3 =

g
(2p)3

Z
E f (x, p)d3 p.

Now, in order to follow the species evolution we must use a parameter l (such as proper
time for massive particles) and look at the distribution function variations with respect to l.
Any change in the distribution at a given value of that parameter has to be expressed through
spacial, time, energy and 3-momentum evolution, taking into account all interactions that
can alter particle number density and kinematics. In the absence of interactions we expect
particles to suffer only the spacetime curvature together with its evolution, and thus stream
freely throughout the expanding Universe. Let us then group all interactions on the right hand
side (called the collisional term) containing both particles added and lost from a particular
8-dimensional infinitesimal spot due to microphysical processes, and keep the dynamical
evolution between collisions on the left hand side. Thus we write the Boltzmann equation as
follows

d f
dl

=C( f ).

Let us expand the (dynamical) left hand side into explicit xµ and pn dependences. We may
assume that mean free distances between particles are large as compared to interaction ranges
(as in rarefied gas), therefore whenever particles are not interacting their trajectories obey the
geodesic equation d pn

dl +Gn
ab pa pb = 0, since they evolve in a free fall frame. Thus

d f
dl

=
∂ f
∂xµ

dxµ

dl
+

∂ f
∂pn

d pn

dl
= pµ ∂ f

∂xµ �Gn
ab pa pb ∂ f

∂pn . (2.2)

Now, in the standard model of cosmology, we use the Robertson-Walker metric

ds2 = gµndxµdxn = dt2 � R(t)2

1� kr2 dr2 �R(t)2r2 dq2 �R(t)2r2 sin2 q df2,

from which we can deduce the set of Christoffel symbols –which are defined as usual by
Gn

ab ⌘ 1
2gµn �gµa,b +gµb,a �gab,µ

�
– of interest. Before computing them, let us think about

the dependences of distribution function f upon spacetime coordinates and 4-momenta.
Indeed, we may assume that the distribution is homogeneous and isotropic, therefore it
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does not vary with space coordinates nor 3-momentum angular distribution. Besides we
know that a particle is always trapped in its mass shell, namely we always have the re-
lation |~p|2 +m2 = E2, meaning that we may drop either the dependence on energy or in
3-momentum amplitude. Thus we get a much simpler structure, namely f ⌘ f (t,E). Then,
the final expression in (2.2) reduces to

E
∂ f
∂t

�G0
ab pa pb ∂ f

∂E
=C( f ).

We compute the following Christoffels

G0
00 = G0

0i = G0
i0 = 0, G0

i j =� Ṙ
R

gi j =�H gi j,

where we have introduced the Hubble parameter H ⌘ Ṙ/R. Thus we come to

E
∂ f
∂t

�H
�
�gi j pi p j�= E

∂ f
∂t

�H |~p|2 ∂ f
∂E

=C( f ),

∂ f
∂t

�H
E2 �m2

E
∂ f
∂E

=
1
E

C( f ). (2.3)

2.2 Evolution of the number density of a species

2.2.1 The Boltzmann equation for the number density

It is interesting to follow number density evolution throughout cosmological evolution, there-
fore we may apply the (2.1) integral to (2.3)

g
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�H
E2 �m2

E
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◆
d3 p =
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Z 1
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Let us develop the left hand side, integrating by parts the energy derivative
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species number density n in a given spacetime and 4-momentum 8-dimensional infinitesimal
space (that we may take as the Universe and its configuration), as well as its pressure p and
energy density r with the useful relations

n =
Z

dn =
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f (x, p)
gd3 p
(2p)3 =

g
(2p)3

Z
f (x, p)d3 p, (2.1)

p =
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d p =
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3E
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Z
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Z
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Now, in order to follow the species evolution we must use a parameter l (such as proper
time for massive particles) and look at the distribution function variations with respect to l.
Any change in the distribution at a given value of that parameter has to be expressed through
spacial, time, energy and 3-momentum evolution, taking into account all interactions that
can alter particle number density and kinematics. In the absence of interactions we expect
particles to suffer only the spacetime curvature together with its evolution, and thus stream
freely throughout the expanding Universe. Let us then group all interactions on the right hand
side (called the collisional term) containing both particles added and lost from a particular
8-dimensional infinitesimal spot due to microphysical processes, and keep the dynamical
evolution between collisions on the left hand side. Thus we write the Boltzmann equation as
follows

d f
dl

=C( f ).

Let us expand the (dynamical) left hand side into explicit xµ and pn dependences. We may
assume that mean free distances between particles are large as compared to interaction ranges
(as in rarefied gas), therefore whenever particles are not interacting their trajectories obey the
geodesic equation d pn

dl +Gn
ab pa pb = 0, since they evolve in a free fall frame. Thus

d f
dl

=
∂ f
∂xµ

dxµ

dl
+

∂ f
∂pn

d pn

dl
= pµ ∂ f

∂xµ �Gn
ab pa pb ∂ f

∂pn . (2.2)

Now, in the standard model of cosmology, we use the Robertson-Walker metric

ds2 = gµndxµdxn = dt2 � R(t)2

1� kr2 dr2 �R(t)2r2 dq2 �R(t)2r2 sin2 q df2,

from which we can deduce the set of Christoffel symbols –which are defined as usual by
Gn

ab ⌘ 1
2gµn �gµa,b +gµb,a �gab,µ

�
– of interest. Before computing them, let us think about

the dependences of distribution function f upon spacetime coordinates and 4-momenta.
Indeed, we may assume that the distribution is homogeneous and isotropic, therefore it

2. Thermal history of Dark Matter 24

does not vary with space coordinates nor 3-momentum angular distribution. Besides we
know that a particle is always trapped in its mass shell, namely we always have the re-
lation |~p|2 +m2 = E2, meaning that we may drop either the dependence on energy or in
3-momentum amplitude. Thus we get a much simpler structure, namely f ⌘ f (t,E). Then,
the final expression in (2.2) reduces to

E
∂ f
∂t

�G0
ab pa pb ∂ f

∂E
=C( f ).

We compute the following Christoffels

G0
00 = G0
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i j =� Ṙ
R

gi j =�H gi j,

where we have introduced the Hubble parameter H ⌘ Ṙ/R. Thus we come to
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2.2 Evolution of the number density of a species

2.2.1 The Boltzmann equation for the number density

It is interesting to follow number density evolution throughout cosmological evolution, there-
fore we may apply the (2.1) integral to (2.3)
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Deriving the Boltzmann equation
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Therefore, if we take a collisionless case using (2.4), then the Boltzmann equation reads

ṅ =�3Hn.

This means that whenever the species is not interacting, then the time evolution of its number
density evolves purely with the expansion rate. An expanding Universe implies a positive
Hubble parameter. Hence the decreasing number density expresses the dilution of the gas
with the evolution of the spacetime, whereas the total number of particles does not evolve
any more.
Let us now develop the interacting side of the Boltzmann equation. In principle we should
take into account all possible interactions involving our particle species. This means regard-
ing 1,2, ...,Ni! 1,2, ...,Nf processes. In practice we will focus in just one type of process,
being 2! 2 scattering (results derived here may be rederived including more complicated
processes without too much effort). Indeed, here our main concern is to understand key
points in the particle species history. When it is meant to be at equilibrium, then we use
equilibrium statistical properties. When a particle is frozen out and does not interact with
others any more, then it is basically in free streaming regime. It is crucial to understand when
it decouples chemically and thermally, though. The former takes place when the species total
number stops changing because both annihilation and creation are no longer relevant. The
latter takes place when the species stops elastic scattering on others, and its thermal evo-
lution is no longer related to the characteristics of the rest of the species. Both moments
determine important features. For example, chemical decoupling of a thermal dark matter
candidate sets its relic density for later stages of the Universe evolution. Whereas details
of thermal decoupling of cold dark matter particles will have an influence on structure for-
mation. However, so far we have focused on number density. Elastic scattering processes,
which thermalize particles and set their temperature to that of the thermal bath, do not change
the number density. Therefore here we will address only annihilation processes.
So, let us label particles involved 1,2$ 3,4. If our particle species is represented by particle
1 in such a process, then we expect 1,2! 3,4 to extract particles from our distribution func-
tion at some 8-volume, and 1,2 3,4 to add particles to it. Furthermore, those processes
will depend on the transition probability, described by the squared amplitude of the process.
Of course, all particles of the 2,3,4 kinds will contribute, thus we have to integrate over
the Lorentz Invariant Phase Space of all possible momenta (d2,3,4LIPS) and spins, weighted
by the corresponding distribution functions. Ensuring 4-momentum conservation for each
transition, we have the general expression of the collisional term

C( f ) =�1
2 Â

spins

Z h
f f2 (1± f3)(1± f4)

��M12!34
��2� f3 f4 (1± f )(1± f2)

��M34!12
��2
i

(2p)4 d4 (p+ p2� p3� p4)
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elastic scattering; do not change densityannihilations; change the number density
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plifications, and integrating the collisional term
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where we introduced the thermally averaged cross section

hs12!34vMoli=
R

vMols12!34dneqdneq
2R

dneqdneq
2

.

Finally, if 1 ⌘ 2, we come to a very simple version of the Boltzmann equation, namely

ṅ =�3Hn�hsvi
�
n2 �n2

eq
�
. (2.5)

This is a Riccati equation. Most of the physical aspects of chemical evolution are apparent
in (2.5). Namely, there are two competing processes ruling the density of particles: the
expansion rate �3Hn and the interaction rate hsvi

�
n2 �n2

eq
�
. Therefore, a particle is in

good thermal contact with the plasma whenever hsvi
�
n2 �n2

eq
�
� 3Hn, or equivalently,

hsvin � 3H. This is indeed the equilibrium condition. When the expansion rate overcomes
the interaction rate, then the particle is out of equilibrium, thus its total number does not
evolve any more.

2.2.2 Expression in a radiation dominated era

We are following the evolution of a species in radiation dominated era. It is useful to express
the time and the Hubble parameter as a function of the thermal bath temperature. Indeed we
can write

H = H0T 2

t =
1

2H0T 2

dT
dt

=�H0T 3.
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today
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Chemical decoupling 
Freeze-out

Interactions maintaining the thermal equilibrium can continue 
Expansion of the Universe
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Time evolution of 
The number density

Interactions which change
the number density

�v n
2
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Only one cross section gives the observed number of DM particles! 

Boltzmann equation caught in the act

(reverse) annihilation 
expansion

annihilations were too efficient

1-way annihilation

number of particles

today

annihilations were not efficient



Introduction to DM physics: Solving Boltzmann

Analytically:

Always about the same value!
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At freeze-out, the density obeys Boltzmann statistics 

⌦0 =
Hr

⇢c,0

T0

h�vi
mDM

Tfo

xfo

n(T ) / (mDMT )3/2 e�
mDM

T nDM,0 =
Hr

h�vi
T0

Tfo



Introduction to DM physics: Solving Boltzmann

Numerically:     re-write Boltzmann to remove T3 factors in number density
by using n = y T3

solve dy/dT instead of dy/dt
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Introduction to DM physics: Solving Boltzmann (numerically)
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�� Sorry but it does not work!

It is a case called STIFF equation!....The exponential requires  a bit more work!

Trapeze method:

> @)()(
2

2
0

2
1

2
0

21
1�

���u
/

 
'
�

�
�

ii
yyyy

T
yy

ii
ii

Start with Y = Y0 (chemical equilibrium)
Solve equation
Compute yi+1 at each step till Y>> Y0   

Y0

Y

Numerical solution



The Hut, Lee&Weinberg argument
Can we have light thermal DM? no!  (well…)

Lee-Weinberg limit:
mdm < O(GeV)

Massive neutrinos, Fermi interactions: dm

dm

f

f

• Depends mainly on mdm,

• if mdm too small, Wdm> 1 !

2
dm

4
w

m v  
m

V v

First calculations to be 
done:  Lee-Weinberg 

(1977)

Introduction to DM physics: Main lesson

Expansion of the Universe
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Time evolution of 
The number density

Interactions which change
the number density
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Particle physics examples



The supersymmetric case

~ double SM spectrum
+ SM fermions + spin-0 particles  
+ Higgs/Gauge boson spin-1/2 particles

sfermions
fermions neutralinos

R-parity 

(-1)
=

(+1)

(-1)SUSY particles

Rp = (�1)3B+L+2s

N=1 : 1 operator of supersymmetry 
Each operator change the spin of particles by 1/2 
SUSY operator applied on SM spectrum leads to new particles with different spin

Initial realisation:  
all masses the same as SM

Nothing at LEP, LHC 
so masses  can't be the same!



Introduction to DM physics: Notions of annihilation

Disappearance of 2 particles in the initial state

Creation of 2 new particles in the final state

Interactions 
which change
the number 
density

DM = Lightest particle

DM = Lightest particle

SM particle

SM particle

SUSY

+R-parity = stable DM

All cross sections are 

�v / m2
�

Lee-Weinberg limit applies!

The supersymmetric case



Supersymmetric and relic density

mDM <200 GeV

Before 1998
We were going to discover 
the neutralino at LHC …



Coannihilations

Exceptions to relic calculations
Nucl.Phys. B237 (1984) 285-306 

The mass difference is critical



hep-ph/9810360

neutralino mass < 200 GeV

coannihilations

Neutralino relic abundance?

Exceptions to relic calculations

mDM > 200 GeV



mDM > TeV

DM co-annihilations with “stops”

Exceptions to relic calculations
hep-ph/9911496



3

Standard model parameter Mean value Experimental uncertainty
mt 172.9 GeV 1.5

mb(mb)
MS 4.19 GeV +0.18

�0.06
⇥s(mZ)MS 0.1184 0.0007

⇥�1
EM(mZ)MS 127.916 0.015

TABLE III. Constraints used to calculate likelihoods for standard
model parameters, from Ref. [19].

initial point in parameter space is randomly chosen. Follow-
ing this steps in the random walk are taken along randomly se-
lected directions in the parameters space and an initial “burn-
in” phase is used to adjust the magnitude of the proposed step
size for each direction to optimise the exploration of the pa-
rameter space, this is periodically adjusted during “burn-in” to
ensure that the parameter space is covered as fully as possible.
The directions in which steps are taken were generated from
the eigenvectors of the covariance matrix found in preliminary
scans. The “burn-in” phase also ensures that the chain has al-
ready converged towards a high likelihood before points are
recorded. The total likelihood function is formed by the prod-
uct of partial likelihoods for each observable in Table II. As in
Ref. [27] we use a Gaussian distribution for observables with
a preferred value

F2(x,µ,⌅) = e�
(x�µ)2

2⌅2 , (1)

where µ is the preferred value of the observable and ⌅ is the
tolerance. For observables with only an upper or lower limit a
distribution of the form,

F3(x,µ,⌅) =
1

1+ e�
(x�µ)

⌅
, (2)

is used. Here ⌅ is positive for lower bounds and negative for
upper bounds. For the relic abundance, the masses of the spar-
ticles and the Higgs masses, the partial likelihood is either one
or zero as no uncertainties are included.

Uncertainties in standard model parameters were in-
cluded in the form of nuisance parameters which are then
marginalised as part of the random walk. The mean values
and uncertainties of the nuisance parameters are shown in Ta-
ble III.

A. Scan A: results for scenarios with m⇤̃0
1
< 100 GeV

Previous supersymmetric parameter scans either looked for
scenarios with the correct relic density (e.g. [28–35]) or re-
laxed the constraint on the relic density, allowing for very
small �FOh2, and did not assume the presence of regenera-
tion mechanism [27, 36]. In this paper we will both relax the
lower bound on the relic density and assume that the freeze-
in mechanism can regenerate the relic density to the observed
value.

In FIG. 1, we show the relic density versus DM mass for
candidates found by the MCMC. In most scenarios more than

FIG. 1. Plot of �FOh2 against m⇤̃0
1
. The colour coding represents

the process with the largest contribution to the neutralino annihila-
tion rate, which determines the freeze-out relic abundance. Green
points correspond to resonant annihilation via Z, red points to res-
onant annihilation via the light Higgs boson (h0), orange points to
resonant annihilation via the pseudo-scalar Higgs (A0), blue points to
stau co-annihilation or annihilation via stau exchange, violet points
to chargino co-annihilations or chargino exchange, black points to
squark co-annihilation (all squark flavours).

one process will contribute to the freeze-out relic abundance
but in FIG. 1 the largest single contribution to the annihilation
rate, which in the majority of scenarios dominates the others,
is indicated. In all of the following plots the points found by
the random walk are plotted as semi-transparent dots, faint re-
gions therefore correspond to a low density of points while
regions of strong colour correspond to denser regions. As
expected there are two visible resonance regions [6], corre-
sponding to Z gauge boson and light CP-even Higgs (h0) s-
channel resonances. In addition there are the usual points
corresponding to heavier neutralinos that can annihilate via
s-channel exchange of the CP-odd Higgs (A0) [31], as is well
known from traditional freeze-out scenarios. These points ap-
pear as a smeared out region due to the large variation in the
value of mA0 .

In addition to the s-channel processes the well known t-
channel exchange and co-annihilations processes involving
charginos, staus and squarks are also found by the MCMC.
It is likely that the majority of the points corresponding to
squark exchange and co-annihilation will be excluded by the
LHC or Tevatron. However, we still include these points as
our focus here is to examine the effect of regeneration and the
resulting DM detection constraints on the possible regions of
the parameter space.

The composition of the neutralino LSP in terms of the weak
eigenstates, the Bino, Higgsinos and Wino differs slightly for
the various regions displayed in FIG. 1.

For the Z and h0 resonance regions the neutralino is mostly
Bino with a small Higgsino component. As is well known,
(see for example [37, 38]), the size of the Higgsino compo-
nent will play a central role in determining the cross section
for DM annihilations via s-channel Z and h0. This Higgsino
component will also lead to the dominant contributions to the
spin-independent elastic scattering cross section in direct de-
tection experiments, where the main process is the t-channel
exchange of a Higgs. This connection is important for what
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FIG. 2. Plot of ⇥FOh2 against m⇤̃0
1
. Colour coded for the process with

the largest contribution to the total neutralino annihilation rate, which
determines the freeze-out relic abundance. Red points correspond to
chargino co-annihilation, green points to annihilation via chargino
t-channel exchange, blue points to annihilation via s-channel Higgs
(roughly speaking the blue points above the green band correspond
to annihilation via an s-channel h0 into tt̄ and bb̄, the few below are
s-channel annihilation via A0), yellow points correspond to a either
squark co-annihilation or gluino-gluino annihilations (the latter in
the case where the gluino is approximately mass degenerate with the
neutralino DM and its freeze-out sets the neutralino relic abundance).

follows in the later sections.
In the cases where t-channel exchange and co-annihilation

processes, involving light SUSY squarks and sleptons, domi-
nate the freeze-out dynamics, the neutralino can have a much
smaller Higgsino component. This is because, in contrast to
the s-channel annihilation processes, the t-channel annihila-
tion and co-annihilation diagrams can occur for pure Bino
neutralinos.

B. Scan B: results for scenarios with m⇤̃0
1
> 100 GeV

In the case of neutralinos heavier than 100 GeV, one does
not expect any resonance structure in the (m⇤̃0

1
,⇥FOh2) plane

since there are no fixed mass neutral particles (such as the
light CP-even Higgs3 or Z boson) that can be produced in an s-
channel resonance. Instead resonant annihilation through A0

will appear over a range of different neutralino masses. Non-
resonant annihilation via the h0 and Z bosons can still produce
a large enough cross section to reduce the relic abundance
for masses above 200 GeV. Chargino or squark t-channel ex-
change and co-annihilations also lead to an enhanced cross
section but this does not appear as a fixed mass resonance. As
a result, we find a smooth homogeneous distribution of points
in the (m⇤̃0

1
,⇥FOh2) plane, as shown in FIG. 2.

The most visible trend in FIG. 2 is that the minimum relic
abundance found by the MCMC increases quadratically as a
function of mass. This dependence of the relic abundance on
the mass of the neutralino DM arises due to the fact that the

3 Although the h0 mass is not fixed, it is restricted to a narrow range in the
MSSM.

relic abundance scales as the inverse of the thermally averaged
cross section, which in turn scales approximately as the in-
verse of the neutralino mass squared. As a result the minimum
relic abundance will increase quadratically with the mass of
the neutralino. Co-annihilation with light stops is expected
to add a few more points (below the “quadratic” limit) when
there is a large fine-tuning between the neutralino and the stop
mass. However, the stop and neutralino self-annihilation cross
sections both decrease with the mass of these particles and an
increase in the fine tuning becomes less and less effective in
compensating for the lack of efficiency of the co-annihilation
process when the neutralino mass increases. Besides, these
points become more difficult to find by the MCMC as they
require smaller variance (i.e. more dedicated searches).

The compositions of the higher mass neutralinos is more
varied than the lower mass states. For example, in points
whose freeze-out annihilation rate is dominated by chargino
co-annihilation and t-channel chargino exchange the neu-
tralino DM can be mostly Wino. For points whose freeze-out
annihilation is dominated by s-channel Higgs processes, the
Higgsino component of these neutralinos can be much larger
(even dominating the composition) than that for neutralino
DM with masses below 100 GeV.

III. DM REGENERATION IN THE LIGHT OF FERMI-LAT
AND XENON100 LIMITS

To examine the impact of a possible regeneration mecha-
nism we apply limits arising in direct and indirect detection
experiments to the points found by the MCMC. We do so in
two cases. The first where there is no regeneration and the
DM density is set by the value determined by freeze-out. The
second where regeneration of the DM density has taken place
after freeze-out and has been regenerated to the WMAP ob-
served value. The limits for direct and indirect detection are
applied as 95% confidence level exclusions to the points found
by the MCMC after the scans have completed rather than in-
cluding these limits in the likelihood calculations. This allows
the two scenarios to be compared directly using the same set
of points.

We look at the effect of regeneration in the planes
(⇧SI,m⇤̃0

1
), (⇧SI,⇥FOh2), (�PP,m⇤̃0

1
) and (�PP,⇧SI), where ⇧SI

is the spin-independent elastic scattering rate, ⇥FOh2 is the
relic abundance generated by freeze-out only and �PP, which
encodes the “particle physics input” to the total flux of gamma
rays from annihilating DM in the dSphs. The quantity �PP is
defined as

�PP =
�⇧v⇥

8⌅m2
⇤̃0

1

Z Emax

E0

dN
dE

dE, (3)

where �⇧v⇥ is the thermally averaged cross section for DM
annihilation, E0 is the minimum threshold energy considered,
Emax is the maximum photon energy the limit is sensitive to
and dN

dE is the gamma ray spectrum averaged over all of the
different annihilation channels. Neglecting propagation the

�

� f̄

fH

m� = mH/2
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Figure 2.6: Summary of constraints on the dark photon model. The limits at ✏ ⇠ 10�7; mA0 > 200
MeV range come from old experiments, and can be improved with SHiP. The g�2 region of interest
is shown as a green band. The projected SHiP sensitivity contour is derived using three modes of
production: mesons, bremsstrahlung, and QCD production.

ensuing constraints are quite strong (reaching down to ✏ ⇠ few ⇥ 10�4 at ↵D ⇠ ↵), but applicable
only to mh0 > 2mA0 region of parameter space. Another study at KLOE [170] have searched for
missing energy signature from h0 decays outside of the detector, and reached the constraints at the
level of ✏ ⇠ few ⇥ 10�3. Constraints on the most motivated case, mh0 ' mA0 , are more di�cult to
obtain because they involve stable h0 on the scale of the detector.

2.5.2 Production and detection of light vector portal DM

New constraints on vector portals occur when direct production of light dark matter states � opens
up. The missing energy constraints on dark photons derived from e+e� colliders were analyzed in
[95]. Invisible decays of A0 are usually harder to detect, except K+

! ⇡+A0
! ⇡++missing energy,

where the competing SM process, K+
! ⇡+⌫⌫̄ is extremely suppressed [86]. Also, fixed targets

experiments sensitive to the missing energy decays of vector states have been proposed recently
[171, 172].

A rather systematic study of the detection of light dark matter produced via the dark photon
portal has been performed in a number of papers [157, 162, 173, 174]. The most stringent constraints
follow from the highest POT experiment, LSND, provided that the dark matter is within kinematic
reach. A typical detection scheme in the proton beam dump experiments is built on the following
chain of events:

pp ! ⇡0 + X, ⇡0
! V �, V ! ��̄, � scattering on electrons/nuclei (2.5.1)

These results significantly constrain, but do not fully rule out, MeV-scale dark matter models,
suggested as a candidate explanation of the 511 keV excess from the galactic bulge. Currently, the
MiniBooNE collaboration is conducting a dedicated search for such states in a beam dump mode
run [175]. The summary of the existing constraints on light dark matter produced via vector portal
is given in Fig. 2.7. Similar constraints were also derived for light dark matter coupled to the
SM via the baryonic vector portal [68]. It is important to emphasize that these constraints cover
the low mass region of parameter space inaccessible to traditional underground direct detection
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of fact new data should be published soon). Also we base
our analysis on several assumptions which are explained in
the sections below. However, despite all these limitations, we
could recover the exclusion limit that XENON100 collabora-
tion has obtained and can therefore highlight the large impact
the low energy behaviour of Leff has on the exclusion limit.
Note that in this paper we focus on Leff uncertainties only; the
astrophysical uncertainties will be addressed elsewhere.

In Section II, we recall the spline interpolation to Leff
dataset as well as the extrapolation at low energies and discuss
the robustness of the fit using an extended filter formalism. We
use different types of interpolation and extrapolation (consis-
tent with the 1-sigma contour defined by XENON100 in [1]).
In Section III, we derive the exclusion limit for the mean Leff
interpolation and compute the exclusion limits for more ex-
treme Leff behaviour at low energies. Results are given in IV
and conclusion in V.

II. Leff

The XENON100 experiment aims at detecting dark matter
particles via their elastic scattering interactions with Xenon
nuclei in a two-phase (liquid and gas) time-projection cham-
ber (TPC) detector. A DM signal is then expected to have two
signatures. The first one, referred to as the primary scintilla-
tion signal S1, arises directly from the interaction of a DM par-
ticle with the liquid Xenon and measure the scintillation light
in the liquid detector. The second, referred to as S2, happens
in the upper part of the detector – at the liquid-gas interface –
and measures the scintillation light which results from the drift
of the free electrons that originate from the ionisation of the
Xenon nuclei in the liquid phase after the DM interaction and
which survived the recombination with ionised atoms. Both
signals are measured in photon-electrons units (PE) [19] and
are used to calibrate the detector’s response to nuclear recoil
events and ultimately to determine whether the experiment has
actually detected dark matter events.

The discrimination parameter is defined as

log
�

S2

S1

⇥
�ERmean.

Events below the threshold of ER = �0.4 in the expected
energy range are considered as potential DM events. The
XENON100 experiment uses the ratio of the two signals S1
and S2 to discriminate between a DM and a background event
so the identification of signal is actually sensitive to the pri-
mary scintillation yield of recoiling Xenon nuclei in the liquid
part of the detector. As the measurement of the absolute scin-
tillation yield is difficult, the quantity that is used by the col-
laboration is the scintillation yield of nuclear recoils relative
to that of 122 keV � rays from a 60Co source. This is called
the relative scintillation efficiency and is referred to as Leff.

The nuclear-recoil energy threshold Enr (in units of keVnr)
of a signal is then determined by both S1 and Leff according
to the relation,

Enr =
S1

Ly Leff

Ser

Snr
,

where Ly is a normalisation factor for the light-yield of the
122 keV gamma rays and Se, Sn are scintillation quenching
factors for electronic and nuclear recoil respectively, due to
the presence of an electric field (for XENON100, the values
used are Se = 0.58 and Sn = 0.95).

The determination of Ly and Leff are therefore of utmost
importance. While Ly has been measured precisely to Ly =
2.20±0.09 PE

keVee , there is no theoretical prediction for the en-
ergy dependence of Leff. An empirical formula was obtained
in [20, 21] by fitting the data obtained in the same reference,
namely

Leff = qncl qesc qel

with qncl the Lindhard factor (cf [20]), qesc reduction of the
scintillation light yield and qel a quench factor due to bi-
excitonic collisions [22].

Such an empirical fit reproduces the observation that the
Leff data decrease with decreasing energy and is also the as-
sumption made by the XENON100 collaboration in [1] in or-
der to obtain a conservative exclusion limit. Yet there are no
measurement of Leff at low recoil energy. Besides, theoretical
considerations by [23] seem to favour a constant behaviour
of Leff at low energy. This would be consistent with the fit
obtained by the XENON10 collaboration [24].

The XENON100 collaboration’s strategy to incorporate the
uncertainties on Leff is to consider Leff as a nuisance param-
eter and profile out the uncertainties with a Gaussian Likeli-
hood centred on the mean value of Leff, that is the best fit.
Similar assumptions are made for the other parameters which
enter the analysis. Although this seems a robust approach, it
is not very transparent. In particular, one loses the correspon-
dence between the exclusion limit and the uncertainties on Leff
which arise due to a specific spline interpolation of the data
and extrapolation at low energies. Indeed, the 1-sigma con-
tour for Leff does not show on the exclusion curve obtained in
[1] but since these uncertainties are due to the lack of data, one
does expect to be able to keep track of them. In addition, it
is hard to tell whether the final exclusion curve does take into
account possible changes in the knots of the interpolation.

In the following, we therefore adopt a different strategy. We
still use a profile Likelihood analysis but we do not treat Leff
as a nuisance parameter. As a result, we can directly see the
effect of the uncertainties on Leff interpolation and extrapola-
tion on the exclusion limit. We thus obtain several exclusion
limits where the mean should be seen as the exclusion limit
corresponding to the best fit of Leff and where the edges of
the contours correspond to the upper and lower parts of the
Leff 1-sigma bands. Said differently, instead of obtaining one
exclusion curve which would correspond to the best fit given
all the uncertainties in the analysis, we prefer to draw the ex-
clusion curves corresponding to the mean value and 1-sigma
bands of Leff and let the reader marginalise ’by eyes’ the ef-
fect of Leff on the exclusion curve. This approach enables us
to anticipate the effect of a possible change in the physics of
Leff below 3 keVnr.

Recoil energy depends crucially on LeffRecoil energy

Light yield for the calibration source 
emitting gammas

quenching factors, related to the electric field
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A. Leff interpolation

To overcome the lack of knowledge about the low energy
behaviour of Leff, it was suggested by the XENON100 collab-
oration to perform an interpolation of the Chepel et al. [25],
Manzur et al. [20], Plante et al. [26] and Aprile et al. [27] Leff
data sets and perform an extrapolation below 3 keVnr. Since
older data sets (e.g. [28], [29],[30],[31]) were disregarded in
[1], we will only consider them to understand their impact on
the Leff interpolation1.

Like in [1], we perform a cubic spline interpolation to the
four datasets previously mentioned and use five knots, placed
at recoil energies of 5,10,25,50 and 100 keVnr respectively.
The best-fit cubic spline is found by freely varying the y-axis
positions of these knots, while minimising the least-squares
�2 goodness-of-fit parameter between the interpolated spline
and the data (see [33] for a good discussion of the methodol-
ogy). The result is shown in figure 1, along with the one sigma
contour, obtained by looking for the maximum and minimum
y-axis positions of the knots which satisfy �2 < �2

min +5.89.

FIG. 1: A fit of a natural cubic spline to data for the relative scin-
tillation efficiency of Xenon, shown as a yellow line, along with the
one sigma contour, shown in blue. The fit uses five knots, shown as
red squares, at fixed positions on the x-axis of 5,10,25,50 and 100
keVnr. The uncertainty on the extrapolation is reflected in the top and
bottom curves of the one sigma blue band. Note that recoil energy
refers specifically to nuclear-recoils here.

The choice of the x-positions of these five knots being
somewhat arbitrary, we now perform another cubic spline in-
terpolation where we place the knots at 10, 25, 50, 75 and
100 keVnr. The translation of the lowest knot, from 5keVnr
to 10keVnr, has been performed to illustrate the effect of ig-
noring the potentially less-reliable data below 10keVnr. As
can be seen in Fig. 2, the greatest change due to the new knot

1 An attempt was made by [32] to measure Leff using the nuclear-recoil band
of XENON10. This data is not considered in our fits, but does provide
an interesting alternative method of determining the relative scintillation
efficiency of Xenon.

positions (5 � 10 keVnr and the additional knot at 75 keVnr)
appears to be the enlargement of the errors in the extrapolated
region for energies below the first knot. However there are
also clear alterations to the interpolation around 75keVnr.

FIG. 2: A fit of a natural cubic spline to data for the relative scin-
tillation efficiency of Xenon, shown as a yellow line, along with the
one sigma contour, shown in blue. The knots used to draw the best-
fit spline are shown as red squares, at positions on the x-axis of 10,
25, 50, 75 and 100 keVnr. The uncertainty on the extrapolation is
reflected in the top and bottom curves of the one sigma blue band.

Changing the knots influences the Leff energy dependence.
In particular, it changes the shape at high and very low energy.
By adding a knot at 75 keVnr, we actually gave some weight
to the single point at (55.2,0.268) which has for effect to drag
the curve up around 50 keVnr. Removing the knot at 5 keVnr
and instead extrapolating also changes the behaviour of Leff
at low energy. In particular, the uncertainties on Leff become
larger below 10 keVnr and notably the constant extrapolation
moves to higher values of Leff.

B. Leff extrapolation

Since there are no data-points below nuclear-recoil energies
of 3keVnr there is a great uncertainty on the energy depen-
dence of Leff at low recoil energies. The empirical behaviour
found in [20] seems to imply that Leff falls down to 0 at low
energy in a way which would be consistent with the spline fit
of Leff at higher energy. However, [23] suggests that based
on the physics of Xenon recoil and an understanding of both
the ionisation yield and scintillation efficiency, Leff should be
constant below 10 keVnr. Such an energy behaviour would be
supported by [33] where it is argued that the drop in the scin-
tillation efficiency observed by [20] could be due to the drop
in sensitivity in the experiment.

Given the lack of data, we will perform an extrapolation
of our curves at low energy as in [1]. I.e. we adopt either a
constant Leff below a certain energy threshold or a drop to 0.
For this latter case, we either extend the spline fit to 1 keVnr
or to 2 keVnr (as in [1]). The uncertainty on the extrapolation
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4.4. Future projects and complementarity

Existing results and projected sensitivities for the spin-independent WIMP-nucleon interactions as a
function of the WIMP mass are summarized in Figure 3, adapted from [91]. In spite of observed anomalies
in a handful of experiments, that could be interpreted as due to WIMPs, albeit not consistently, we have
no convincing evidence of a direct detection signal induced by galactic dark matter. Considering LUX’s
lack of a signal in 85.3 live-days⇥118 kg of liquid xenon target, excluding ⇠33GeV WIMPs with interaction
strengths above 7.6⇥10�46cm2, it becomes clear that, at the minimum, ton-scale experiments are required
for a discovery above the 5-sigma confidence level (unless the WIMP is lighter than ⇠10GeV, where larger
cross sections are feasible). Several large-scale direct detection experiments are in their planning phase and
will start science runs within this decade.

Figure 3: Summary for spin-independent

WIMP-nucleon scattering results. Existing

limits from the noble gas dark matter ex-

periments ZEPLIN-III [69], XENON10 [71],

XENON100 [75], and LUX [39], along with

projections for DarkSide-50 [85], LUX [39],

DEAP3600 [90], XENON1T, DarkSide G2,

XENONnT (similar sensitivity as the LZ

project [92], see text) and DARWIN [93] are

shown. DARWIN is designed to probe the

entire parameter region for WIMP masses

above ⇠6GeV/c
2
, until the neutrino back-

ground (yellow region) will start to dominate

the recoil spectrum. Experiments based on the

mK cryogenic technique such as SuperCDMS

[94] and EURECA [95] have access to lower

WIMP masses. Figure adapted from [91].

The next phase in the LUX program, LUX-ZEPLIN (LZ), foresees a 7 t LXe detector in the same SURF
infrastructure, with an additional scintillator veto to suppress the neutron background. Construction is
expected to start in 2014, and operation in 2016, with the goal of reaching a sensitivity of 2⇥10�48cm2 after
three years of data taking [92]. The upgrade of XENON1T, XENONnT, is to increase the sensitivity by
another order of magnitude, thus also reaching 2⇥10�48cm2. While much of the XENON1T infrastructure
will be reused, the inner detector will be designed and constructed once XENON1T is taking science data,
with planned operation between 2018-2021. The XMASS collaboration plans a 5 t (1 t fiducial) single-phase
detector after its current phase, with greatly reduced backgrounds and an aimed sensitivity of ⇠10�46cm2.
In its second stage, PandaX will operate a total of 1.5 t LXe as WIMP target, with ⇠1 t xenon in the fiducial
volume. All sub-systems of the existing experiment, with the exception of the central TPC, are designed to
accommodate the larger target mass [83]. The DarkSide collaboration plans a 5 t LAr dual-phase detector,
with 3.3 t as active target mass, in the existing neutron and muon veto at LNGS. The aimed sensitivity is
10�47cm2 [96].

DARk matter WImp search with Noble liquids (DARWIN) is an initiative to build an ultimate, multi-ton
dark matter detector at LNGS [97, 93]. Its primary goal is to probe the spin-independent WIMP-nucleon
cross section down to the 10�49 cm2 region for ⇠50GeV/c2 WIMPs, as shown in Figure 3. It would thus
explore the experimentally accessible parameter space, which will be finally limited by irreducible neutrino
backgrounds. Should WIMPs be discovered by an existing or near-future experiment, DARWIN will measure
WIMP-induced nuclear recoil spectra with high-statistics, constraining the mass and the scattering cross
section of the dark matter particle [98, 99]. Other physics goals of DARWIN are the first real-time detection
of solar pp-neutrinos with high statistics and the search for the neutrinoless double beta decay [27]. The
latter would establish whether the neutrino is its own anti-particle, and can be detected via 136Xe, which
has a natural abundance of 8.9% in xenon.
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4.4. Future projects and complementarity
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