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X-rays are photons, no mass, no charge; 

Electromagnetic waves: � ��, �� � �̂�
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Resonant X-ray Magnetic ScatteringX-rays
W. Roentgen , Nobel Prize 1901
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Resonant X-ray Magnetic ScatteringInteraction of X -rays with Matter
X-ray attenuation dominant processes / Total photon  scattering cross-section

1) Absorption (w/o ionisation)
2) Photoelectric effect (ionisation of a valence or core electrons, secondary emission)
3) Coherent scattering (atoms nor ionized neither excited)
4) Compton scattering
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Resonant X-ray Magnetic ScatteringThomson elastic scattering J. J. Thomson, Nobel Prize 1906

Scattering by a free electron 

X-rays are EM waves coupling to the charge of the electrons;

• Electromagnetic field interacts with outer shell electrons accelerating them,      
acceleration produces re-radiation at a same energy in all directions

• A plane-wave impinging on a quasi-free charge produces a scattered spherical wave with 
an amplitude that depends on the scattering angle

• The electric field due to an accelerated particle depends on the angle between the 
acceleration and the scattered radiation

〈E2〉/ 〈E0
2〉 = 

!"

#$%"&$
1 ( )*+�φ�/2

⇒ 1 mg of matter ⇒ I/I0 ~ 10-5
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Resonant X-ray Magnetic ScatteringX-ray atomic form factor
Amplitude of a wave scattered by an isolated atom ~ sum of amplitudes per electrons

	. =/ 0 � ��1�23� = .
 ( .′ ( 5.′′

.
 → Z at small values of (sin θ)/λ

.′ ( 5.′′ : dispersion corrections close to at absorption edges, very weak dependence on the 
scattering angle, .′′ represents a phase shift of the scattered photons
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Resonant X-ray Magnetic ScatteringX-ray diffraction
Diffraction from a set of atoms, Bragg Law, Recipro cal space

Crystals made up of parallel planes of atoms; incident 
waves specularly reflected by those planes; constructive 
interferences occurs when path difference is an integral 
number of wavelengths:

Bragg	Law: 	=λ � 22>�?+5=@
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Resonant X-ray Magnetic ScatteringX-ray diffraction
Bravais lattice & Selection rules
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Resonant X-ray Magnetic ScatteringOrdering: crystalline, magnetic, orbital,…
Quasicrystals : 6D periodicity,…

FM AFM AFM triangulated      weak FM 

Incommensurate order: spiral, conical spiral, …

Orbital ordering

Magnetic ordering
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In the nonrelativistic limit, X-rays couple exclusively to the charge of the electrons; 
however acceleration of an electron by a photon depends upon the spin as well;

• 1970: Platzman & Tsoar predict X-ray diffraction from antiferromagnets

• 1972 & 1974  till 1981,1984:  Brunel & de Bergevin demonstrate experimentally 
the non resonant magnetic scattering from ferromagnets, ferrimagnets and 
antiferromagnets in the laboratory

F. de Bergevin & M. Brunel, Phys. Lett. A 39, 141 (1972) 

Typically : 

General Formulae: 
• de Bergevin & Brunel (1981)
• Blume and Gibbs (1988)
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Resonant X-ray Magnetic ScatteringDiffraction from magnetic materials
Non-resonant magnetic scattering / pre-synchrotron work

ABCD,	EFGHI

AJKCLDM
~ 10-6
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Resonant X-ray Magnetic ScatteringDiffraction from magnetic materials
Non-resonant X-ray magnetic scattering
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• Weak but allows to obtain the L/S ratio
• High energy limit sinθ → 0  ⇒ S2 only
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Resonant X-ray Magnetic ScatteringDiffraction from magnetic materials
Resonant X-ray magnetic scattering / work at synchr otron

• 1988 : Gibbs et al. observe a large resonant enhancement in the magnetic 
satellite intensities related to the magnetic spiral structure in Holmium when the 
energy of the incident X ray is tuned through the Ho LIII absorption edge

• 1988 : Hannon & Trammel explain the resonance enhancement as arising from 
electric multipole transitions
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Resonant X-ray Magnetic ScatteringDiffraction from magnetic materials
Resonant X-ray magnetic scattering

Electric dipole and quadrupoles dominant processes; magnetic multipoles 
contributions smaller by a factor ~ 60;

⇒ Strong 
⇒ electron and shell selective

⇒ Allows to probe ordering of several 
type of magnetic species in an 

alloy

E1 = Electric dipole transitions (L=1), E2 = Electric quadrupole transitions (L=2)
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Resonant X-ray Magnetic ScatteringDiffraction from magnetic materials
Resonant X-ray magnetic scattering

Multipolar order

Di Matteo et al., Phys. Rev. B 72 (2005) 144406

RXS has proved a powerful tool for probing 
multipolar ordering up to rank L=2 in CeB6 [1,2] 
and in UO2 [3], UPd3 [4], DyB2C2 [5]. Field-
induced octupolar ordering (L=3) is evidenced 
in CeB6 at the Ce LIII edge upon applying 
magnetic fields [6]. 

[1] H. Nakao et al., J. Phys. Soc. Jpn. 70 (2001) 1857 
[2] F. Yakhou et al., Phys. Lett. A 285 (2001) 191 
[3] S. B. Wilkins et al., Phys. Rev. B 73 (2006) 060406R
[4] H. C. Walker et al., Phys. Rev. Lett. 97 (2006) 37203 
[5] T. Matsumara et al., Phys. Rev. B 65, (2002) 094420 
[6] T. Matsumura et al., Phys. Rev. Lett. 103, (2009) 017203



Experimental Aspects
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Resonant X-ray Magnetic ScatteringExperimental aspects
General considerations / X-ray magnetic scattering

• The technique requires the energy tuneability and high flux available at 3rd generation 
synchrotron sources, as well as full polarization control and polarization analysis

• Horizontal scattering geometry >> vertical scattering geometry ⇒ dedicated 
diffractometers

• The possibility of achieving a very small beam focus allows to investigate very small 
crystals and to map out domains; 

• The high q resolution allows to investigate disorder near phase transitions

• Exotic phenomena occur mostly at low temperatures in magnetic and strongly 
correlated electron systems; they are very sensitive to external perturbations such as 
electric field, magnetic field or pressure ⇒ many different type of sample environments
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Resonant X-ray Magnetic ScatteringExperimental aspects
Dedicated beamlines at 3 rd generation synchrotron sources

Resonant scattering and diffraction beamline P09 at  PETRA III at DESY

Energy range 3.0 till 14 keV w/ focus and full 
polarization control; 

> EH1: High precision “4S+2D” 6-circle 
diffractometer

> EH2: non-magnetic heavy-load 6-circle 
diffractometer in horizontal Psi
geometry

� 14 Tesla magnet w/ different probes: he-3 & rotator 

� High pressure 
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Resonant X-ray Magnetic ScatteringExperimental aspects
Dedicated beamlines at 3 rd generation synchrotron sources

Resonant scattering and diffraction beamline P09 at  PETRA III at DESY

Focusi
ng 
mirror
s

Hi
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h Pha

se
retar
der

HR mono 
(optional)

QBP
M1Frontend

CRL
s

Undulator

P09 Optic hutch                                         P08 EH P09 EH1 P09 EH2       P09 EH3

Monochromator: DCM Si-(111)/(311)

Energy range: 2.7 – 24 (50) keV

Flux at 10 keV: 2x1013 counts/sec

Focus size (moderate): 140 x 40 µm2 (mirror) 

(small):40 x 4 µm2 (compound refractive lenses)

Variable incident polarization: double phase plates, linear/circular

Energy resolution: < 1 eV, <0.3 eV
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Resonant X-ray Magnetic ScatteringExperimental aspects
Stokes parameters

)2sin*)(2cos*2cos1(*)( ,
2

,
2

0int aBaLINaBa PII θηηθη −++=

ηηηηa =-90 ⇒⇒⇒⇒ ππππ‘

ηηηηa =0 ⇒⇒⇒⇒ σσσσ‘

k‘

Z� � 1, Z� � Z� � 0

Z\]^ � Z�
� ( Z�

�

Measurable quantities: Stokes parametersZ� � 1, Z� � Z� � 0 Z� 	_ Z� _ Z� _ 0

Analyzer crystals scattering at 90 degrees for Pola rization analysis
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Resonant X-ray Magnetic ScatteringExperimental aspects
Azimuthal scans and polarization analysis
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Resonant X-ray Magnetic ScatteringExperimental aspects
Dichroic studies

Circular left and right combined with 
azimuthal scans in resonant X-ray 
scattering can be used to determine the 
exact structure of magnetic spin conical 
spirals
S. L. Zhang et al.,  Phys. Rev. B 96, 
094401 (2017)
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Resonant X-ray Magnetic ScatteringExperimental aspects
Birefringence and Wave plates

The components of E parallel and perpendicular to optic axis emerge with a phase 
difference δ between them given by δ = (2πd/λ)∆n.

• A quarter-wave plate (QWP) δ = π/2 can be used to convert linearly polarized light to 
circularly polarized light. The incident linearly polarized light must be oriented at 45o to 
the wave plate's axes.

• A half-wave plate (HWP) δ = π can be used to rotate the plane of linearly polarized 
light. The angle of rotation is 2θ, where θ is the angle between the angle of polarization 
and the wave plate's fast axis.

Unpolarized light entering a birefringent crystal not along the optic axis of the crystal is 
split into 2 beams which are refracted by different amounts.
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Resonant X-ray Magnetic ScatteringExperimental aspects
Birefringence and Wave plates

Birefringence weak in the X ray wavelength region, indice of refraction ~ 1 and isotropic; 
Birefringence near Bragg diffraction (dynamical the ory of X-rays)

P. Skalicky and C. Malgrange, Acta Cryst. A 28, 501 (1972)
C. Giles & C. Malgrange , work 1994 till 1999 and references therein

For a 45° angle between the diffracting planes and the electric vector, the phase shift between
the s- and p- waves writes as:

φσπ =  -(π/2)*[re
2 λX

3 Re(FGF-G*) sin(2θB)]*teff / [∆θ*(πV)2]

• Perfect crystals: diamond, LiF, silicium

• Low Z to maximize transmission and
minimize “aberrations”

• Lattice spacing determines minimum
energy of use: C(111)~3 keV, Si(111)~
2keV

• Crystal quality

⇒⇒⇒⇒ Diamond best figure of merit
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Resonant X-ray Magnetic ScatteringExperimental aspects
Phase retarder plates at beamline P09: 2.7 to 14 ke V



Some recent 
highlights
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Magnetic structure determinations
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Full magnetic structure determination EuPtIn 4, P09 EH1 4K ARS Cryostat

J. Linares Mardegan et al., in preparation

Zintl phases, complex crystallographic structures (extensive polyanionic clusters), 
semiconductors or semimetals w/ unusual optoelectronic properties and potential for 
thermoelectric applications;

EuPtIn4@P09, TN = 13 K; 

Magnetic wavevector search: (1/2, 1/2, τ), τ=0.43 incommensurate, 2 atoms per unit cell

Integrated intensities / structure factor calculati ons  ⇒⇒⇒⇒ select between ΓΓΓΓ1 and ΓΓΓΓ2 IR

Linear polarization scans ⇒⇒⇒⇒ magnetic moment direction ⇒⇒⇒⇒ triangulated lattice

Azimuthal scans : unconclusive, travel > 500 µm w/ cryox cryoy Simulation with mag. moments along (1,-1/2,-1)
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Magnetic structure determinations
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Spin Flop transition in EuPtIn 4, P09 EH2 14T
J. Linares Mardegan et al., in preparation
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Magnetic structure determinations
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Weyl semimetal exotic state in pyrochlore iridates;

C. Donnerer et al., Phys. Rev. Lett. 117, 037201 (2016 )

X. Wan et al., Phys. Rev. B 83, 205101 (2011)

All-in all-out magnetic order in Sm 2Ir2O7, P09 EH1 ARS cryostat
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Magnetoelectricity below 23 K, magnetic ordering at 38 K, spin reorientation at 5 K

Azimuthal dependence flat; FPA ⇒⇒⇒⇒ Basal plane spiral in the (ab) plane

Magnetic structure determination

| Single X-ray Diffraction from Magnetic Materials | Dr. Sonia Francoual, Oct. 9th, 2017 

D. K. Shukla et al., Phys. Rev. B 86 224421 (2012)

Ho and Fe magnetic ordering in multiferroic HoFe 3(BO3)4, P09 EH1 4K ARS Cryostat
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Magnetoelectricity below 23 K, magnetic ordering at 38 K, spin reorientation at 5 K

Combined high energy magnetic scattering that measu res the total spin and RXMS

⇒⇒⇒⇒ Re-arrangement of Fe moments in the basal plane brings magnetoelectricity

Magnetic structure determination
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D. K. Shukla et al., Phys. Rev. B 86 224421 (2012)

Ho and Fe magnetic ordering in multiferroic HoFe 3(BO3)4, P09 & P07
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Magnetic X-ray scattering at He-3 temperatures
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Magnetic X-ray scattering at He-3 temperatures
S. Francoual et al., J. Synchrotron Rad. 22, 1207 (2015)

D. Mannix et al., Physica B 353 121–126 (2004) 

TmNi2B2C, TSC~ 11 K, TN=1.5 K 

Tm moments are aligned along the tetragonal c-axis in an 
incommensurate spin-density wave (SDW) 

Magnetic satellite observed at the Tm L3 edge at (1+τ,1+ τ,10), 
τ=0.0956 in the πσ’ channel ⇒ 2.5 counts per second at 360 mK

Analyzer crystal Cu(1,1,1) with 10 % reflectivity,  Attenuation factor of 10000 to reduce 
beam heating effects , Two QWPs in series in a 90º geometry absorbing 50 % + 
attenuators such that equivalent attenuation factor is 10000, 90 minutes measurement 
counting 30 seconds / point
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Magnetic X-ray scattering at He-3 temperatures
S. Francoual et al., J. Synchrotron Rad. 22, 1207 (2015)

D. Mannix et al., Physica B 353 121–126 (2004) 

TmNi2B2C, TSC~ 11 K, TN=1.5 K 

Tm moments are aligned along the tetragonal c-axis in an 
incommensurate spin-density wave (SDW) 

Magnetic satellite observed at the Tm L3 edge at (1+τ,1+ τ,10), 
τ=0.0956 in the πσ’ channel ⇒ 2.5 counts per second at 360 mK

Analyzer crystal Cu(1,1,1) with 10 % reflectivity,  Attenuation factor of 10000 to reduce 
beam heating effects , Two QWPs in series in a 90º geometry absorbing 50 % + 
attenuators such that equivalent attenuation factor is 10000, 90 minutes measurement 
counting 30 seconds / point
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Non-resonant magnetic x-ray scattering:
- Determination of L/S ratio of ordered magnetic phases

Resonant X-ray scattering:
- Chemical and shell selectivity
- High order multipoles, orbital ordering, local site anisotropies

Both full magnetic structure determinations & magnetic domain imaging

X-ray polarization analysis and control w/ or w/o azimuthal dependences
- Single out the individual scattering amplitude contributions
- Complex sample environments
- Dichroic studies

Conclusions



Thank you for your 
attention !


