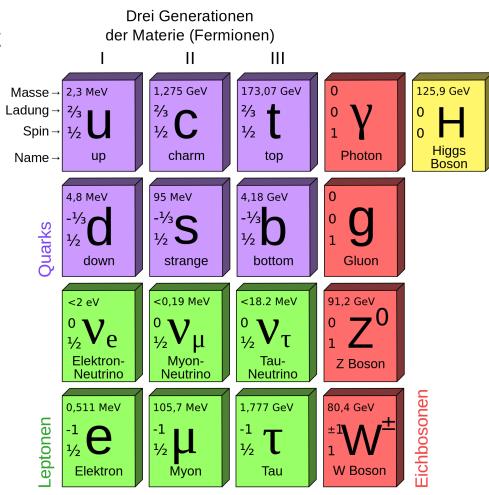
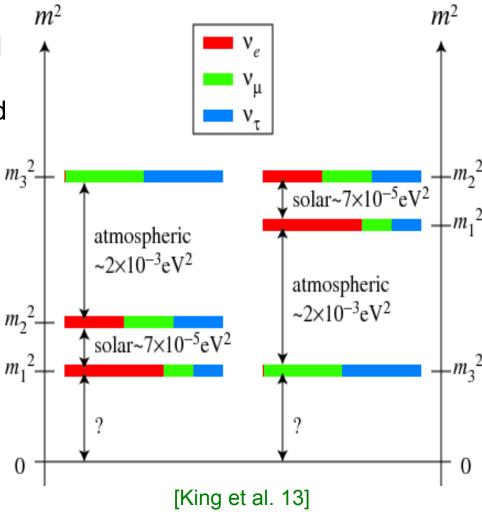
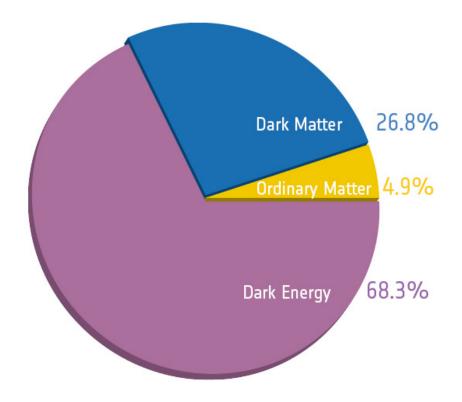
Axion/ALPs in Particle Physics.


Andreas Ringwald

SFB Lecture DESY Hamburg, D 30 June 2017

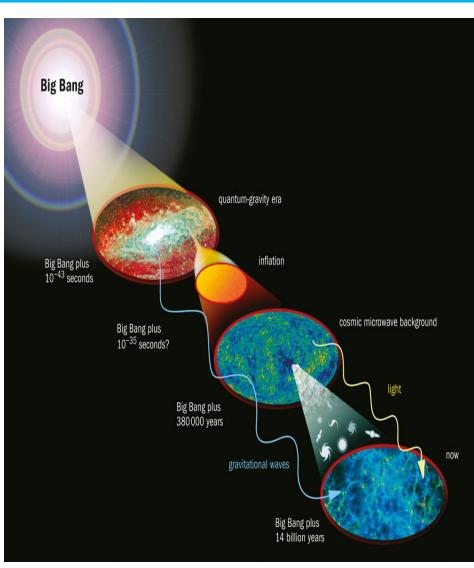
Discovery of Higgs boson marks completion of SM particle content


[wikipedia]

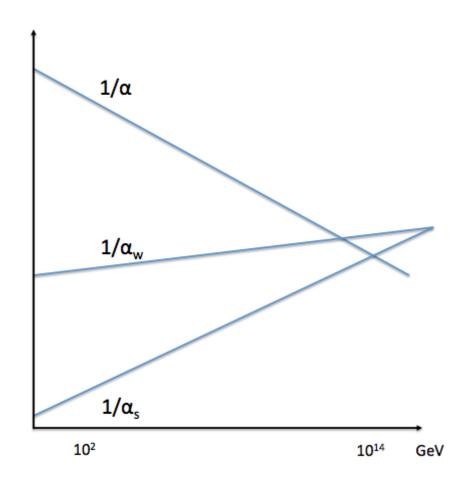

Discovery of Higgs boson marks completion of SM particle content

Strong case for physics beyond SM (BSM) suggested by observations in particle physics, astrophysics and cosmology

Neutrino flavour oscillations


- Discovery of Higgs boson marks completion of SM particle content
- Strong case for physics beyond SM (BSM) suggested by observations in particle physics, astrophysics and cosmology
 - Neutrino flavour oscillations
 - Dark matter

[PLANCK]


- Discovery of Higgs boson marks completion of SM particle content
- Strong case for physics beyond SM (BSM) suggested by observations in particle physics, astrophysics and cosmology
 - Neutrino flavour oscillations
 - Dark matter
 - Inflation
 - Baryon asymmetry

- Discovery of Higgs boson marks completion of SM particle content
- Strong case for physics beyond SM (BSM) suggested by observations in particle physics, astrophysics and cosmology
 - Neutrino flavour oscillations
 - Dark matter
 - Inflation
 - Baryon asymmetry
 - Unification?
 - Naturalness?
 - Cosmological constant (dark energy)
 - Hierarchy between weak scale and Planck scale
 - Non-observation of strong CP violation

[StackExchange]

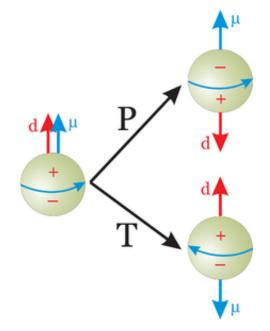
Most general gauge invariant Lagrangian of QCD:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_q \right) q - \frac{\alpha_s}{8\pi} \theta G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

• Parameters: strong coupling α_s , quark masses $\mathcal{M}_q = \mathrm{diag}(m_u, m_d, \ldots)$ and theta angle θ [Belavin et al. `75;'t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]

Most general gauge invariant Lagrangian of QCD:

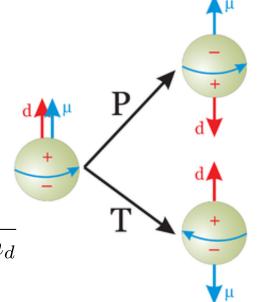
$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_{q} \right) q - \frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$$


- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q=\mathrm{diag}(m_u,m_d,\ldots)$ and theta angle θ [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]
- > Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto {f E}^a \cdot {f B}^a$ violates P and T, and thus CP

Most general gauge invariant Lagrangian of QCD:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_{q} \right) q - \frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q=\mathrm{diag}(m_u,m_d,\ldots)$ and theta angle θ [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]
- > Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto {\bf E}^a \cdot {\bf B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron



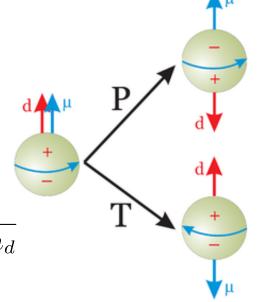
Most general gauge invariant Lagrangian of QCD:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_{q} \right) q - \frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q=\mathrm{diag}(m_u,m_d,\ldots)$ and theta angle θ [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]
- > Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto {\bf E}^a \cdot {\bf B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron; prediction:

$$d_n \sim e\theta \, \frac{m_*}{m_n^2} \sim 6 \times 10^{-17} \, \theta \, e \, \text{cm}; \quad m_* = \frac{m_u m_d}{m_u + m_d}$$

Most general gauge invariant Lagrangian of QCD:


$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i \gamma_{\mu} D^{\mu} - \mathcal{M}_{q} \right) q - \frac{\alpha_{s}}{8\pi} \theta G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q=\mathrm{diag}(m_u,m_d,\ldots)$ and theta angle θ [Belavin et al. `75;´t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]
- > Topological theta term $\propto G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \propto {\bf E}^a \cdot {\bf B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron; prediction:

$$d_n \sim e\theta \, \frac{m_*}{m_n^2} \sim 6 \times 10^{-17} \, \theta \, e \, \text{cm}; \quad m_* = \frac{m_u m_d}{m_u + m_d}$$

> Experiment: [Baker et al. 06]

$$|d_n| < 2.9 \times 10^{-26} \ e \,\mathrm{cm} \Rightarrow |\theta| < 10^{-9}$$

- Naturalness?
 - Cosmological constant (dark energy)
 - 2. Hierarchy between weak scale and Planck scale
 - 3. Non-observation of strong CP violation
- 1. and 2. can be "solved" by anthropic selection in multiverse
- > Fails for 3.!
 - No anthropic argument for $|\theta| < 10^{-9}$
- Dynamical solution of 3. most required!

[Quantamagazine]

- > If θ were a dynamical field, its vacuum expectation value would be zero. Correspondingly: strong CP problem solved
 - Partition function in terms of Fourier series of Euclidean path integrals over gauge fields with fixed topological charge

$$Z(\theta) = \sum_{Q = -\infty}^{+\infty} \exp[i\theta Q] Z_Q, \qquad Q = \int d^4x \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} \equiv \int d^4x \, q(x)$$

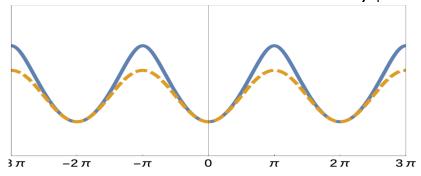
$$Z_Q = \int_Q [dG] [dq] [d\bar{q}] \exp\left[-\int d^4x \left\{\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + i\bar{q}\gamma_\mu D_\mu q - \bar{q}_R \mathcal{M} q_L - \bar{q}_L \mathcal{M}^\dagger q_R\right\}\right]$$

- Z_O positive
- Vacuum energy density in QCD

$$\epsilon_0(\theta) \equiv -\frac{1}{\mathcal{V}} \ln \left[\frac{Z(\theta)}{Z(0)} \right], \qquad -\pi \le \theta \le \pi$$

has absolute minimum at $\theta = 0$

[Vafa,Witten '84]


- > If θ were a dynamical field, its vacuum expectation value would be zero. Correspondingly: strong CP problem solved
 - Partition function in terms of Fourier series of Euclidean path integrals over gauge fields with fixed topological charge

$$Z(\theta) = \sum_{Q = -\infty}^{+\infty} \exp[i\theta Q] Z_Q, \qquad Q = \int d^4x \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} \equiv \int d^4x \, q(x)$$
$$Z_Q = \int_{\mathcal{Q}} [dG] [dq] [d\bar{q}] \exp\left[-\int d^4x \left\{\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + i\bar{q}\gamma_\mu D_\mu q - \bar{q}_R \mathcal{M} q_L - \bar{q}_L \mathcal{M}^\dagger q_R\right\}\right]$$

- Z_O positive
- Vacuum energy density in QCD

$$\epsilon_0(heta) \equiv -rac{1}{\mathcal{V}} \ln \left[rac{Z(heta)}{Z(0)}
ight], \qquad -\pi \leq heta \leq \pi$$

has absolute minimum at $\theta = 0$

[Grilli di Cortona et al. `16]

$$\epsilon_0(\theta) \simeq m_{\pi}^2 f_{\pi}^2 \left[1 - \frac{\sqrt{m_u^2 + m_d^2 + 2m_u m_d \cos \theta}}{m_u + m_d} \right]$$

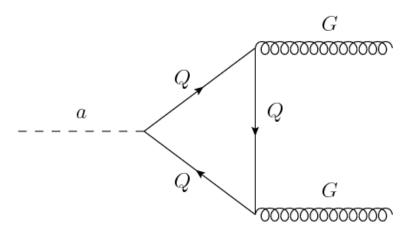
Chiral EFT allows to calculate vacuum energy density:

[Di Vecchia, Veneziano `80]

Axionic Solution of Strong CP Problem

- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{\rm PQ} + \rho(x) \right) {\rm e}^{{\rm i} A(x)/v_{\rm PQ}}$
 - Excitation of modulus: $m_{
 ho} \sim v_{\mathrm{PQ}}$
 - Excitation of angle: NGB $m_A \ll v_{\mathrm{PQ}}$

[Raffelt]


Axionic Solution of Strong CP Problem

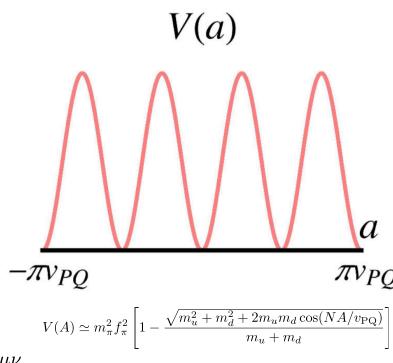
- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$

$$\sigma(x) = \frac{1}{2} \left(v_{PQ} + \rho(x) \right) e^{iA(x)/v_{PQ}}$$

- Excitation of modulus: $m_{
 ho} \sim v_{
 m PQ}$
- Excitation of angle: NGB $m_A \ll v_{\rm PQ}$
- > Quarks (SM or extra) carry PQ charges such that $U(1)_{PQ}$ is anomalously broken due to gluonic triangle anomaly

$$\partial_{\mu} J_{U(1)_{PQ}}^{\mu} = -\frac{\alpha_s}{8\pi} N G_{\mu\nu}^a \tilde{G}^{a\,\mu\nu} - \frac{\alpha}{8\pi} E F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Axionic Solution of Strong CP Problem


- > A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM
- > Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{\rm PQ} + \rho(x) \right) {\rm e}^{{\rm i} A(x)/v_{\rm PQ}}$
 - Excitation of modulus: $m_{
 ho} \sim v_{
 m PQ}$
 - Excitation of angle: NGB $m_A \ll v_{\rm PQ}$
- > Quarks (SM or extra) carry PQ charges such that $U(1)_{\rm PQ}$ is anomalously broken due to gluonic triangle anomaly

$$\partial_{\mu} J_{U(1)_{PQ}}^{\mu} = -\frac{\alpha_s}{8\pi} N G_{\mu\nu}^a \tilde{G}^{a\,\mu\nu} - \frac{\alpha}{8\pi} E F_{\mu\nu} \tilde{F}^{\mu\nu}$$

No strong CP problem, since NGB field acts as x-dependent theta parameter:

$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \frac{\dot{A}(x)}{f_A} G^a_{\mu\nu} \tilde{G}^{a \mu\nu} - \frac{\alpha}{8\pi} \frac{E}{N} \frac{A(x)}{f_A} F_{\mu\nu} \tilde{F}^{\mu\nu}; \quad f_A = v_{\rm PQ}/N$$

QCD dynamics: $\langle A(x) \rangle = 0$

[Peccei, Quinn 77; Weinberg 78; Wilczek 78]

 $A \dots Axion$

Kim-Shifman-Vainshtein-Zakharov (KSVZ) Model

- > Add singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry to Standard Model (SM)
- Parameters in most general scalar potential such that symmetry spontaneously broken in vacuum:

$$V(H,\sigma) = \lambda_H \left(H^{\dagger} H - \frac{v^2}{2} \right)^2 + \lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\text{PQ}}^2}{2} \right)^2 + 2\lambda_{H\sigma} \left(H^{\dagger} H - \frac{v^2}{2} \right) \left(|\sigma|^2 - \frac{v_{\text{PQ}}^2}{2} \right)$$

> For $\lambda_H, \lambda_\sigma > 0$ and $\lambda_{H\sigma}^2 < \lambda_H \lambda_\sigma$, minimum of potential attained at:

$$\langle H^{\dagger}H\rangle = v^2/2, \qquad \langle |\sigma|^2 \rangle = v_{\rm PO}^2/2$$

Expansion about VEV:

$$\sigma(x) = \frac{1}{\sqrt{2}} \left(v_{PQ} + \rho(x) \right) e^{iA(x)/v_{PQ}}$$

Excitation of modulus:

$$m_{\rho} = \sqrt{2 \, \lambda_{\sigma}} \, v_{\text{PQ}} + \mathcal{O} \left(\frac{v}{v_{\text{PQ}}} \right)$$

Excitation of angle (Nambu-Goldstone Boson (NGB)):

$$m_A = 0$$

Low energy effective field theory: SM + massless non-interacting NGB

Kim-Shifman-Vainshtein-Zakharov (KSVZ) Model

[Kim 79; Shifman, Vainshtein, Zakharov 80]

- > Add color-triplet, electroweak singlet fermion $Q = (Q_L, Q_R)$
- ightharpoonup PQ scalar and exotic quark are assumed to transform under $U(1)_{PQ}$ as

$$\sigma \to e^{i\alpha}\sigma$$
, $Q_L \to e^{i\alpha/2}Q_L$, $Q_R \to e^{-i\alpha/2}Q_R$

Invariant Lagrangian:

$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \sigma^* \partial^{\mu} \sigma - V(H, \sigma) + \frac{i}{2} \overline{Q} \partial_{\mu} \gamma^{\mu} Q - y \overline{Q}_L \sigma Q_R$$

> After PQ symmetry breaking, integrate out modulus: $\left[\sigma(x) = \frac{v_{\text{PQ}}}{\sqrt{2}} e^{iA(x)/v_{\text{PQ}}} \right]$

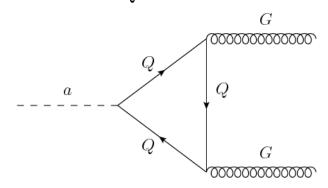
$$\mathcal{L} \supset \frac{1}{2} \partial_{\mu} A \partial^{\mu} A + \frac{i}{2} \overline{Q} \partial_{\mu} \gamma^{\mu} Q - y \frac{v_{\text{PQ}}}{\sqrt{2}} e^{iA/v_{\text{PQ}}} \overline{Q}_{L} Q_{R}^{\perp}$$

> Redefining fermion by local transformation,

$$Q_L \to e^{iA/2v_{PQ}}Q_L; \quad Q_R \to e^{-iA/2v_{PQ}}Q_R$$

we obtain:

$$\mathcal{L} \supset \frac{1}{2} \left(\partial_{\mu} A \right)^{2} + \frac{i}{2} \overline{Q} \partial_{\mu} \gamma^{\mu} Q - y \frac{v_{\text{PQ}}}{\sqrt{2}} \overline{Q}_{L} Q_{R} + \frac{1}{2} \frac{\partial_{\mu} A}{v_{\text{PQ}}} \overline{Q} \gamma^{\mu} \gamma_{5} Q$$



Kim-Shifman-Vainshtein-Zakharov (KSVZ) Model

$$\mathcal{L} \supset \frac{1}{2} \left(\partial_{\mu} A \right)^{2} + \frac{i}{2} \overline{Q} \partial_{\mu} \gamma^{\mu} Q - y \frac{v_{\text{PQ}}}{\sqrt{2}} \overline{Q}_{L} Q_{R} + \frac{1}{2} \frac{\partial_{\mu} A}{v_{\text{PQ}}} \overline{Q} \gamma^{\mu} \gamma_{5} Q$$

Coupling of axion with exotic color-triplet gives rise to effective interaction with gluons via triangle anomaly:

$$\mathcal{L} \supset -\frac{1}{2} \frac{A}{v_{PQ}} \partial_{\mu} \left(\overline{Q} \gamma^{\mu} \gamma_5 Q \right) = -\frac{\alpha_s}{8\pi} \frac{A}{v_{PQ}} G^c_{\mu\nu} \tilde{G}^{c \mu\nu}$$

> Integrating out heavy color-triplet, end up with effective theory at scales much below PQ scale $v_{\rm PQ}$, but above QCD scale $\Lambda_{\rm QCD}$:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{2} \partial^{\mu} A \, \partial_{\mu} A - \frac{\alpha_s}{8\pi} \frac{A}{v_{\text{PQ}}} G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu}$$

Dine-Fischler-Srednicki-Zhitnitskyi (DFSZ) Model

[Zhitnitsky 80;Dine,Fischler,Srednicki 81]

Type II Higgs Doublet Model:

$$\mathcal{L}_Y = Y_{ij}\bar{q}_{iL}H_dd_{jR} + \Gamma_{ij}\bar{q}_{iL}\tilde{H}_uu_{jR} + h.c.$$

> Fields are supposed to transform under PQ symmetry as:

$$\sigma \to e^{i\alpha}\sigma ,$$

$$H_d \to e^{iX_d\alpha}H_d ,$$

$$H_u \to e^{-iX_u\alpha}H_u ,$$

$$d_{iR} \to e^{-iX_d\alpha}d_{iR} ,$$

$$u_{iR} \to e^{-iX_u\alpha}u_{iR} ,$$

Yukawa interactions as well as most general scalar potential,

$$V(\sigma)=-\mu_\sigma^2|\sigma|^2+\lambda_\sigma|\sigma|^4+\lambda_3H_d^\dagger H_u\sigma^2$$
 invariant, if $X_u+X_d=2$

Anomalous divergence of PQ current:

$$\partial^{\mu} J_{\mu}^{PQ} = -6 \frac{\alpha_s}{8\pi} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} - 16 \frac{\alpha}{8\pi} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Dine-Fischler-Srednicki-Zhitnitskyi (DFSZ) Model

Low energy effective Lagrangian below EW, but above QCD scale:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{\alpha_s}{8\pi} \frac{A}{f_A} G^c_{\mu\nu} \tilde{G}^{c,\mu\nu} - \frac{\alpha}{8\pi} \frac{8}{3} \frac{A}{f_A} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{\partial_{\mu} A}{f_A} \sum_f C_f \overline{f} \gamma^{\mu} \gamma_5 f$$

$$f_A = \frac{v_{\text{PQ}}}{6}; \quad C_{Ae} = C_{Ad} = \frac{\sin^2 \beta}{3}; \quad C_{Au} = \frac{\cos^2 \beta}{3}; \quad \tan \beta = \frac{v_u}{v_d}$$

In contrast to KSVZ model:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{2} \partial^{\mu} A \, \partial_{\mu} A - \frac{\alpha_s}{8\pi} \frac{A}{v_{\text{PO}}} G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu}$$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{1}{2} m_A^2 A^2 - \frac{\alpha}{8\pi} \frac{C_{A\gamma}}{f_A} A F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C_{Af}}{f_A} \partial_{\mu} A \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

> Axion mass:
$$m_A=57.0(7) \left(\frac{10^{11}\,\mathrm{GeV}}{f_A}\right) \mu\mathrm{eV}$$
 [Weinberg '78; ... Borsanyi et al. `16]

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{1}{2} m_A^2 A^2 - \frac{\alpha}{8\pi} \frac{C_{A\gamma}}{f_A} A F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C_{Af}}{f_A} \partial_{\mu} A \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

- > Axion mass: $m_A=57.0(7) \left(\frac{10^{11}\,\mathrm{GeV}}{f_A}\right) \mu\mathrm{eV}$ [Weinberg '78; ... Borsanyi et al. `16]
- Couplings of axion to SM suppressed by powers of

$$f_A = v_{\rm PQ}/N \gg v = 246 \,\mathrm{GeV}$$

rendering the axion "invisible"

[Kim 79;Shifman,Vainshtein,Zakharov 80;Zhitnitsky 80;Dine,Fischler,Srednicki 81;...]

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{1}{2} m_A^2 A^2 - \frac{\alpha}{8\pi} \frac{C_{A\gamma}}{f_A} A F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C_{Af}}{f_A} \partial_{\mu} A \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

- > Axion mass: $m_A=57.0(7) \left(\frac{10^{11}\,\mathrm{GeV}}{f_A}\right) \mu\mathrm{eV}$ [Weinberg '78; ... Borsanyi et al. `16]
- > Couplings of axion to SM suppressed by powers of

$$f_A = v_{\rm PQ}/N \gg v = 246 \,\mathrm{GeV}$$

rendering the axion "invisible"

[Kim 79;Shifman,Vainshtein,Zakharov 80;Zhitnitsky 80;Dine,Fischler,Srednicki 81;...]

> Photon coupling: $C_{A\gamma} = \frac{E}{N} - 1.92(4)$

[Kaplan 85;Srednicki `85]

> Nucleon couplings:

[Grilli di Cortona et al. `16]

$$C_{Ap} = -0.47(3) + 0.88(3)C_{Au} - 0.39(2)C_{Ad} - 0.038(5)C_{As}$$
$$-0.012(5)C_{Ac} - 0.009(2)C_{Ab} - 0.0035(4)C_{At},$$
$$C_{An} = -0.02(3) + 0.88(3)C_{Ad} - 0.39(2)C_{Au} - 0.038(5)C_{As}$$
$$-0.012(5)C_{Ac} - 0.009(2)C_{Ab} - 0.0035(4)C_{At}$$

Electron coupling very model dependent

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} A \partial^{\mu} A - \frac{1}{2} m_A^2 A^2 - \frac{\alpha}{8\pi} \frac{C_{A\gamma}}{f_A} A F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C_{Af}}{f_A} \partial_{\mu} A \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

- > Axion mass: $m_A=57.0(7) \left(\frac{10^{11}\,\mathrm{GeV}}{f_A}\right) \mu\mathrm{eV}$ [Weinberg '78; ... Borsanyi et al. `16]
- > Couplings of axion to SM suppressed by powers of

$$f_A = v_{\rm PQ}/N \gg v = 246 \,\mathrm{GeV}$$

rendering the axion "invisible"

[Kim 79;Shifman,Vainshtein,Zakharov 80;Zhitnitsky 80;Dine,Fischler,Srednicki 81;...]

> Photon coupling: $C_{A\gamma} = \frac{E}{N} - 1.92(4)$

[Kaplan 85;Srednicki `85]

Nucleon couplin model-independent

[Grilli di Cortona et al. `16]

$$C_{Ap} = -0.47(3) + 0.88(3)C_{Au} - 0.39(2)C_{Ad} - 0.038(5)C_{As}$$
$$-0.012(5)C_{Ac} - 0.009(2)C_{Ab} - 0.0035(4)C_{At},$$
$$C_{An} = -0.02(3) + 0.88(3)C_{Ad} - 0.39(2)C_{Au} - 0.038(5)C_{As}$$
$$-0.012(5)C_{Ac} - 0.009(2)C_{Ab} - 0.0035(4)C_{At}$$

Electron coupling very model-dependent

- Range of couplings?
- > KSVZ-type axion models: anomaly originates from heavy fermions Q in representation $R_Q = (\mathcal{C}_Q, \mathcal{I}_Q, \mathcal{Y}_Q)$ under $SU(3)_C \times SU(2)_I \times U(1)_Y$
- Fifteen cases survive phenomenological requirements
 - sufficiently short lived to avoid issues with long-lived strongly interacting relics
 - no Landau poles induced below Planck scale


R_Q	\mathcal{O}_{Qq}	$\Lambda_{LP}^{R_Q}[{ m GeV}]$	E/N	N_{DW}
100	CQq	I LP[GeV]	<i>D</i> /11	TIDW
$R_1:(3,1,-\frac{1}{3})$	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3	1
$R_2:(3,1,+\frac{2}{3})$	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3	1
$R_3:(3,2,+\frac{1}{6})$	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3	2
$R_4:(3,2,-\frac{5}{6})$	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27} (g_1)$	17/3	2
$R_5:(3,2,+\frac{7}{6})$	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22} (g_1)$	29/3	2
$R_6: (3,3,-\frac{1}{3})$	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30} (g_2)$	14/3	3
$R_7:(3,3,+\frac{2}{3})$	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27} (g_2)$	20/3	3
$R_8:(3,3,-\frac{4}{3})$	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18} (g_1)$	44/3	3
$R_9: (\overline{6}, 1, -\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	$2.3 \cdot 10^{37} (g_1)$	4/15	5
R_{10} : $(\overline{6}, 1, +\frac{2}{3})$	$ \overline{Q}_L \sigma u_R \cdot G $	$5.1 \cdot 10^{30}(g_1)$	16/15	5
R_{11} : $(\overline{6}, 2, +\frac{1}{6})$	$\overline{Q}_R \sigma q_L \cdot G$	$7.3 \cdot 10^{38}(g_1)$	2/3	10
R_{12} : $(8, 1, -1)$	$\overline{Q}_L \sigma e_R \cdot G$	$7.6 \cdot 10^{22}(g_1)$	8/3	6
R_{13} : $(8, 2, -\frac{1}{2})$	$\overline{Q}_R \sigma \ell_L \cdot G$	$6.7 \cdot 10^{27} (g_1)$	4/3	12
R_{14} : $(15, 1, -\frac{1}{3})$	$\overline{Q}_L \sigma d_R \cdot G$	$8.3 \cdot 10^{21}(g_3)$	1/6	20
R_{15} : $(15, 1, +\frac{2}{3})$	$\overline{Q}_L \sigma u_R \cdot G$	$7.6 \cdot 10^{21}(g_3)$	2/3	20

[Di Luzio, Mescia, Nardi 16]

- Range of couplings?
- > KSVZ-type axion models: anomaly originates from heavy fermions Q in representation $R_Q = (\mathcal{C}_Q, \mathcal{I}_Q, \mathcal{Y}_Q)$ under $SU(3)_C \times SU(2)_I \times U(1)_Y$
- Fifteen cases survive phenomenological requirements
 - sufficiently short lived to avoid issues with long-lived strongly interacting relics
 - no Landau poles induced below Planck scale
- More than one order of magnitude range in

$$g_{A\gamma} \equiv C_{A\gamma}/(2\pi f_A)$$

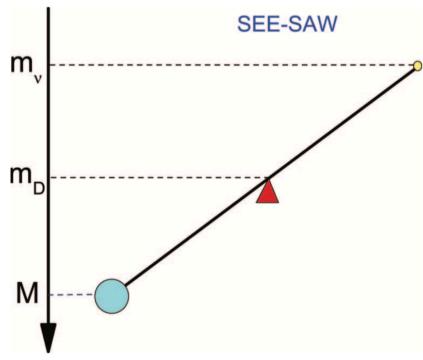
[Di Luzio, Mescia, Nardi 16]

A Minimal Model of Particle Physics and Cosmology

Unify PQ U(1) symmetry with lepton symmetry: add three right-handed SM-singlet neutrinos to KSVZ like model [Shin 87; Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon Hu_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon HN_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\,\tilde{Q}\sigma Q + y_{Qd\,i}\sigma Qd_{i} + h.c.\right]$$

q	u			N			•	
1/2	-1/2	-1/2	1/2	-1/2	-1/2	-1/2	-1/2	1


A Minimal Model of Particle Physics and Cosmology

Unify PQ U(1) symmetry with lepton symmetry: add three right-handed SM-singlet neutrinos to KSVZ like model [Shin 87; Dias et al. `14]

$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon H u_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon H N_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j}\right] + y\,\tilde{Q}\sigma Q + y_{Q_{d}i}\sigma Q d_{i} + h.c.$$

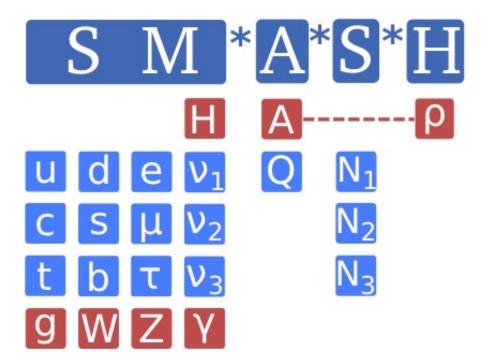
- No strong CP problem
- See-saw explanation of active neutrino masses

$$m_{\nu} = 0.04 \,\text{eV} \left(\frac{10^{11} \,\text{GeV}}{v_{\sigma}}\right) \left(\frac{-F \, Y^{-1} \, F^{T}}{10^{-4}}\right)$$

A Minimal Model of Particle Physics and Cosmology

Unify PQ U(1) symmetry with lepton symmetry: add three right-handed SM-singlet neutrinos to KSVZ like model [Shin 87; Dias et al. `14]

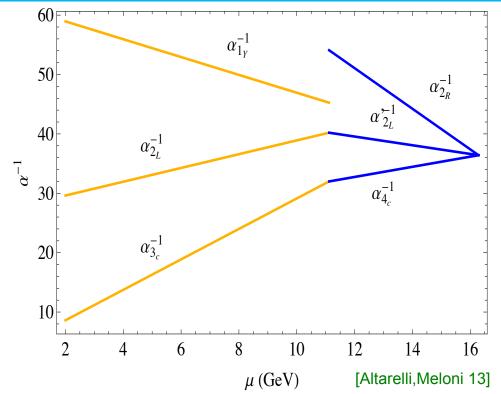
$$\mathcal{L} \supset -\left[Y_{uij}q_{i}\epsilon Hu_{j} + Y_{dij}q_{i}H^{\dagger}d_{j} + G_{ij}L_{i}H^{\dagger}E_{j} + F_{ij}L_{i}\epsilon HN_{j} + \frac{1}{2}Y_{ij}\sigma N_{i}N_{j} + y\,\tilde{Q}\sigma Q + y_{Qd\,i}\sigma Qd_{i} + h.c.\right]$$
SM * Axion * See-saw * Higgs portal inflation


- No strong CP problem
- See-saw explanation of active neutrino masses

$$m_{\nu} = 0.04 \,\text{eV} \left(\frac{10^{11} \,\text{GeV}}{v_{\sigma}}\right) \left(\frac{-F \, Y^{-1} \, F^{T}}{10^{-4}}\right)$$

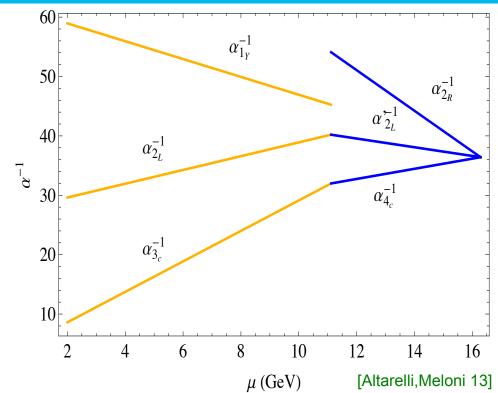
- Axion dark matter
- **Explains matter-anti-matter** asymmetry by thermal leptogenesis
- Higgs portal inflation

SM * Axion * See-saw * Higgs portal inflation


[Ballesteros, Redondo, AR, Tamarit, 1608.05414]

Axion in SO(10) GUT

- SO(10) GUT automatically features right-handed sterile neutrinos
 - Neutrino masses and mixing
 - Baryogenesis via leptogenesis
- PQ extension of SO(10) GUT may in addition provide
 - Solution of strong CP problem
 - Axion dark matter
- In non-SUSY SO(10) GUT, intermediate SSB step required:



$$SO(10) \xrightarrow{M_{\mathrm{GUT}}-210_H} SU(4)_C SU(2)_L SU(2)_R \xrightarrow{M_{\mathrm{I}}-126_H, 45_H} SU(3)_C SU(2)_L U(1)_Y \xrightarrow{M_Z-10_H} SU(3)_C U(1)_Y$$

Axion in SO(10) GUT

- SO(10) GUT automatically features right-handed sterile neutrinos
 - Neutrino masses and mixing
 - Baryogenesis via leptogenesis
- PQ extension of SO(10) GUT may in addition provide
 - Solution of strong CP problem
 - Axion dark matter
- In non-SUSY SO(10) GUT, intermediate SSB step required:

$$SO(10) \xrightarrow{M_{\mathrm{GUT}}-210_H} SU(4)_C SU(2)_L SU(2)_R \xrightarrow{M_{\mathrm{I}}-126_H, 45_H} SU(3)_C SU(2)_L U(1)_Y \xrightarrow{M_Z-10_H} SU(3)_C U(1)_Y$$

Imposing PQ symmetry,

V100 210 210

[Holman, Lazarides, Shafi 83]

$$16_{\psi^{(j)}} \to e^{i\alpha} 16_{\psi^{(j)}}, \ 10_H \to e^{-2i\alpha} 10_H, \ 45_H \to e^{4i\alpha} 45_H, \ \overline{126}_H \to e^{-2i\alpha} \overline{126}_H, \ 210_H \to 210_H$$

predicts $f_A \sim M_{\rm I}/(3\,g) \sim 10^{11}\,{\rm GeV}$

- Extending the SM by further well-motivated global symmetries may lead to even more Nambu-Goldstone bosons:
 - Global lepton number symmetry: Majoron [Chikashige et al. 78; Gelmini, Roncadelli 80]
 - Global family symmetry: Familon

[Wilczek 82; Berezhiani, Khlopov 90]

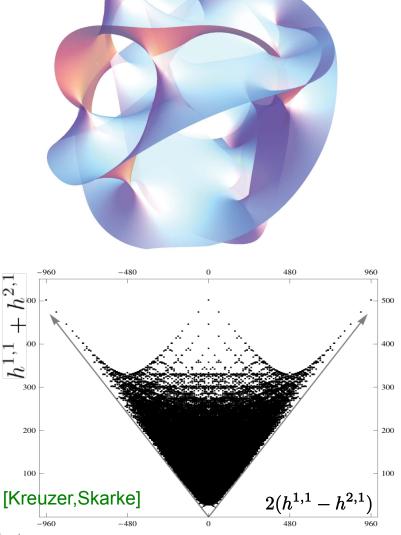
$$\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \frac{C'_{ig}}{f_{a'_i}} \, a'_i \, G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} - \frac{\alpha}{8\pi} \frac{C'_{i\gamma}}{f_{a'_i}} \, a'_i \, F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \frac{C'_{a'_i f}}{f_{a'_i}} \, \partial_{\mu} a'_i \, \overline{\psi}_f \gamma^{\mu} \gamma_5 \psi_f$$

Then the particle corresponding to the excitation of the field combination

$$\frac{A(x)}{f_A} \equiv \frac{C'_{ig}}{f_{a'_i}} \, a'_i(x)$$

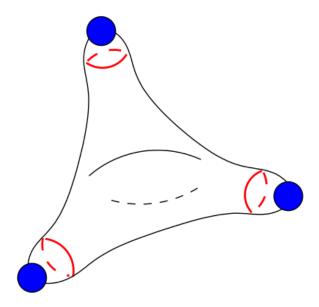
is the axion

- Particle excitations of the fields orthogonal to this field combination are called Axion-Like-Particles (ALPs)
- > String theory suggests a plenitude of ALPs [Witten 84; Conlon 06; Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell 10; Cicoli, Goodsell, AR 12]


- > 4D low-energy effective field theory emerging from string theory predicts natural candidates for the axion, often even an `axiverse´, containing many additional ALPs
 - KK zero modes of 10D antisymmetric tensor fields, the latter belonging to the massless spectrum of the bosonic string

MASSLESS SPECTRUM OF STRING THEORIES					
THEORY	DIMENSION	SUPERCHARGES	BOSONIC SPECTRUM		
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$		
$E_8 \times E_8$			$A_{\mu}^{i\bar{j}}$ in adjoint representation		
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$		
SO(32)			$A_{\mu}^{i\bar{j}}$ in adjoint representation		
Type I	10	16	NS-NS	$g_{\mu u},\phi$	
SO(32)			$A_{\mu}^{iar{j}}$ in adjoint representation		
			R-R	$C_{(2)}$	
Type IIB	10	32	NS-NS	$g_{\mu u},B_{\mu u},\phi$	
			R-R	$C_{(0)}, C_{(2)}, C_{(4)}$	
Type IIA	10	32	NS-NS	$g_{\mu u},B_{\mu u},\phi$	
			R-R	$C_{(1)}, C_{(3)}$	

[Quevedo `02]


- > 4D low-energy effective field theory emerging from string theory predicts natural candidates for the axion, often even an `axiverse´, containing many additional ALPs
 - KK zero modes of 10D antisymmetric tensor fields, the latter belonging to the massless spectrum of the bosonic string
 - shift symmetry from gauge invariance in 10D;
 # ALPs depends on topology;
 - SB scale of order the string scale, i.e. GUT scale, 10^{16} GeV, in the heterotic string case; typically lower, the intermediate scale, 10^{11} GeV, in IIB compactifications realising brane worlds with large extra dimensions [Witten 84; Conlon 06; Arvanitaki et al. 09; Acharya et al. 10; Cicoli, Goodsell, AR 12]

Andreas Ringwald | Axion/ALPs in Particle Physics, SFB Lect

Figure 1: A plot of the Hodge numbers of the Kreuzer–Skarke list. $\chi = 2(h^{11} - h^{21})$ is plotted horizontally and $h^{11} + h^{21}$ is plotted vertically. The oblique axes bound the region $h^{11} \geq 0$, $h^{21} \geq 0$.

- > 4D low-energy effective field theory emerging from string theory predicts natural candidates for the axion, often even an `axiverse´, containing many additional ALPs
 - KK zero modes of 10D antisymmetric tensor fields, the latter belonging to the massless spectrum of the bosonic string
 - shift symmetry from gauge invariance in 10D;
 # ALPs depends on topology;
 - SB scale of order the string scale, i.e. GUT scale, 10¹⁶ GeV, in the heterotic string case; typically lower, the intermediate scale, 10¹¹ GeV, in IIB compactifications realising brane worlds with large extra dimensions [Witten 84; Conlon 06; Arvanitaki et al. 09; Acharya et al. 10; Cicoli, Goodsell, AR 12]
 - NGBs from accidental PQ symmetries appearing as low energy remnants of discrete symmetries from compactification, SB scale decoupled from string scale [Lazarides, Shafi 86; Choi et al. 09; Dias et al. 14]

- Discrete symmetries in orbifold compactifications of heteroric string:
 - $\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ from strings splitting and joining
 - $\mathbb{Z}_{36}^R \times \mathbb{Z}_{18}^R \times \mathbb{Z}_4^R$ from broken SO(6) Lorentz symmetry of compact space [Nilles et al. 1308.3435; Cabo Bizet et al. 1308.5669]

Summary

- Unlike other naturalness problems (cosmological constant, weak scale), smallness of theta can not be justified by anthropic reasoning
- Plenty of UV extensions of SM can provide an axionic solution of the strong CP problem
- Strong CP problem solved for any value of decay constant
- Axion mass in terms of decay constant very well determined
- Couplings to photons and nucleons somewhat, to electrons strongly model-dependent
- Next Friday: Axion/ALPs in Astrophysics and Cosmology
- Suggest phenomenologically interesting ranges for decay constant

