
Using the Outer Hadron Calorimeter
in the TwinMux emulator
for Level 1 muon trigger

1 / 19

The Muon Drift Tube (DT) system
[1]

2 / 19

The Muon Drift Tube (DT) system
[2]

4 staggered layers form 1 SuperLayer (SL).

SLr -φ have wires parallel to the beamline, and measure quantities in the r -φ plane.

SLz have wires perpendicular to the beamline, and measure quantities in the r -z
plane.

In MB1/2/3, one chamber is formed by 2 SLr -φ and 1 SLz .

3 / 19

The Muon Drift Tube (DT) system
[3]

In MB4, one chamber is formed by only 1 SLr -φ.

The DT chambers provide Trigger Primitives (TPs) which store information about
the location of the hit, number of aligned DT-hits, the bending angle φB etc. It
also contains a quality code which indicates the number of SL hits and the how
well aligned they are.

4 / 19

The Outer Hadron (HO) calorimeter

|η| < 1.4.

Central ring has 2 layers. The others have 1.

Segmentation: ∆η ×∆φ = 0.087× 0.087.

The HO provides Trigger Primitives (TPs) which among other things, store the
η-φ location information, and also a mip-bit which stores whether the hit is
mip-like (within certain thresholds) or not.

5 / 19

Need for the HO

1.5− 1− 0.5− 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 in Station 2
µ

ηTwinMux trigger efficiency vs.

DTTP

DT + HO

Efficiency in muon barrel gap regions is much lower.

Scenario where a DT station fails.

Since the HO covers the muon barrel gap regions (along constant η), it can be
used to aid the muon track finder.

6 / 19

The TwinMux

The DT-TPs and HO-TPs are collected by the TwinMux (a µTCA board), along
with information from the RPC (mainly for timing), and sent to the Barrel Muon
Track Finder (BMTF).

The TwinMux emulator is a piece of code that emulates this behaviour, and can
be used for stuff like testing new algorithms.

Currently, the HO-TPs are not sent by the TwinMux to the BMTF.

I am implementing an algorithm to decide if and when will an HO-TP be used to
support the DT-TPs.

7 / 19

The algorithm [1]

Loop over all the DT-TPs in the following manner:

1 Take a DT-TP in say the first station/barrel.

2 Decide whether the DT-TP is Low Quality (0 < LQ < 4) or High Quality
(3 < HQ < 7).

3 For LQ, try to find a matching HO-TP in the same wheel as the DT-TP such that
∆iφ < 1.

4 For HQ, try to find a matching HO-TP such that ∆iη ×∆iφ < 1× 1, i.e. within
a 3× 3 tile window.

5 If a matching HO-TP is found, then the quality code of the DT-TP is modified to
indicate that this DT-TP has support from the HO.

8 / 19

The algorithm [2]

6 This modified DT-TP, say DT-TP’ (primed) will be treated differently in the
BMTF.

The modified DT-TPs can be used by the BMTF to:

recover muons in case of a muon barrel failure.

recover muons in the barrel gap regions where the efficiency is low.

9 / 19

Datasets

/ZeroBiasBunchTrains[0-5]/Run2016H-v1/RAW

10 / 19

/ZeroBiasBunchTrains[0-5]/Run2016H-v1/RAW

Algorithm performance: L1 trigger rate [1]

Have to check that the rate increase of the L1 trigger is not too high.

Unprescaled means nBunch = 1; can be scaled to any arbitrary bunch filling. The
pT cut is 3 GeV.

As can be seen, the rate increase is tolerable.

Have to resolve issue with HOTP mip-bit.

11 / 19

Algorithm performance: L1 trigger rate [2]

30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

Unprescaled rate [Hz] vs. PU

BMTF

BMTF + HO/DT (LQ)

BMTF + HO/DT (HQ)

Unprescaled rate [Hz] vs. PU

30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

BMTF

BMTF + HO/DT (LQ)

BMTF + HO/DT (HQ)

12 / 19

The HOTP mip-bit [1]

Accessing mip-bit (suggested by Christopher West):

(hoTP ->bits()>>hoTP ->whichSampleTriggered ())&0x1

HOTP unpacker is HOTriggerPrimitiveDigi.h; will use the TwinMux unpacker
once it’s ready.

Naively, hotpDigi.bits() can take values from 0 to 1023 (03FF = 1023); will
depend on the value of the raw (packed) Trigger Primitive (uint32 t theHO TP).

/// get the raw (packed) Triger Primitive
uint32_t raw() const { return theHO_TP; }
/// get the number of samples used to compute the TP
int nsamples () const { return (theHO_TP >>12)&0x000F; }
/// get the number of the triggering sample
int whichSampleTriggered () const { return (theHO_TP >>16)&0x000F; }
/// get the single -bit data
int bits() const { return (theHO_TP >>20)&0 x03FF; }

Discussion with HO-experts - may be Pooja can elucidate on that.

13 / 19

HOTriggerPrimitiveDigi.h

The HOTP mip-bit [2]

htemp
Entries 44515
Mean 9.62e+05
Std Dev 2.335e+06

hoTPdigi_raw.hoTPdigi_raw
0 2000 4000 6000 8000 10000

310×
1

10

210

310

410

htemp
Entries 44515
Mean 9.62e+05
Std Dev 2.335e+06

hoTPdigi_raw.hoTPdigi_raw
htemp

Entries 44515
Mean 4
Std Dev 0

hoTPdigi_nSamples.hoTPdigi_nSamples
2 2.5 3 3.5 4 4.5 5 5.5 6

210

310

410

htemp
Entries 44515
Mean 4
Std Dev 0

hoTPdigi_nSamples.hoTPdigi_nSamples

htemp
Entries 44515
Mean 2
Std Dev 0

hoTPdigi_whichSampleTriggered.hoTPdigi_whichSampleTriggered
0 0.5 1 1.5 2 2.5 3 3.5 4

210

310

410

htemp
Entries 44515
Mean 2
Std Dev 0

hoTPdigi_whichSampleTriggered.hoTPdigi_whichSampleTriggered
htemp

Entries 44515
Mean 0.7756
Std Dev 2.227

hoTPdigi_bits.hoTPdigi_bits
0 2 4 6 8 10

1

10

210

310

410

htemp
Entries 44515
Mean 0.7756
Std Dev 2.227

hoTPdigi_bits.hoTPdigi_bits

14 / 19

Algorithm performance: DTTP Efficiency [1]

A DT track segment is reconstructed from a single DT chamber.

In-time means that the TP must have been recorded at the correct bunch-crossing.

The efficiencies are computed separately for each muon station (barrel).

The DTTP efficiency is defined as 1:

εMBi
DTTP (in a bin) = # of in-time DTTPs in MBi matched to the denominator

of DT track segments in MBi matched to reconstructed muon tracks

Say a DTTP is missing in MB2. Then the MB1 and HO information can be used.
The efficiency with HO support is defined as:

εMB2
DTTP+HOTP (in a bin) = # of HOTPs matched to in-time MB1 DTTPs matched to the denominator

of DT track segments in MB2 matched to reconstructed muon tracks

15 / 19

Algorithm performance: DTTP Efficiency [2]

1.5− 1− 0.5− 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 in Station 2
µ

ηTwinMux trigger efficiency vs.

DTTP

DT + HO

Trend similar to Florian’s result.

One can play around with the cuts used to match the objects to get higher/lower
efficiencies.

1Stefano Marcellini
16 / 19

Algorithm performance: BMTF Efficiency [1]

The BMTF constructs tracks out of DTTPs.

The efficiencies are computed separately for each muon station (barrel).

A genuine DTTP is one that is matched to a DT track segment which was in turn
matched to a reconstructed muon track.

The BMTF efficiency is defined as: given there is a genuine DTTP, what fraction
of times was it used to create a track.

εMBi
BMTF (in a bin) = # of BMTF tracks matched to the denominator

of genuine DTTPs in MBi

17 / 19

Algorithm performance: BMTF Efficiency [2]

1.5− 1− 0.5− 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 in Station 2
µ

ηBMTF efficiency vs.

BMTF

BMTF + HO

Trend similar to Florian’s result - mainly the wheel gap regions are affected,

My result seems to have slightly lower increase in efficiency - as before, can play
around with the cuts.

18 / 19

Summary

Will use the TwinMux unpacker once it’s ready.

Issue with the HO mip-bit needs to be resolved.

Have partially implemented the change in the TwinMux emulator - however,
cannot check actual performance unless the BMTF algorithm is changed to use
the modified DTTPs.

19 / 19

