Simplified Template Cross Sections

Frank Tackmann

Deutsches Elektronen-Synchrotron

Higgs/B9 meeting, DESY June 26, 2017

Frank Tackmann (DESY)

Simplified Template Cross Sections

2017-06-26 0 / 21

< (7)

Introduction.

< 🗗 >

Direct Coupling Fits.

Pros

- Maximum possible sensitivity
- Allows use of advanced selection techniques (MVAs, black magic, ...)
- Can benefit from kinematic correlations among production modes across all decay channels in combination

Cons

- Theory predictions and *uncertainties* maximally entangled in results
- Any nontrivial theory changes require new results from experiments

Frank Tackmann (DESY)

Simplified Template Cross Sections

2017-06-26 1 / 21

Separating Measurement from Interpretation.

Goals

- Minimize dependence on theory systematics in measurements
 - Clearer and systematically improvable treatment at interpretation level (acceptance corrections and extrapolations to total xsec)
- Minimize model dependence in measurements
 - Decouples measurements from discussions about specific models (SM, linear/nonlinear EFT, BSM models)
- Measurements stay long-term useful
- Allows easy (re)interpretation with different theory inputs/assumptions
 - Improved theory predictions/uncertainties
 - μ_i, κ_i , anomalous couplings, EFT coefficients, specific BSM scenarios

Fiducial Cross Sections.

Pros: Staying as close as possible to what is actually measured

- Allows maximally theory-independent measurements
- Representation of the data that remains long-term useful
- ⇒ Of course nothing new and routinely done in other SM measurements

However, Higgs is quite different from (other) SM measurements

- Many different production and decay modes with large differences in
 - Statistics
 - Relative signal/background
 - Theory uncertainties
 - BSM sensitivity

Optimizing for maximal theory independence requires sacrificing sensitivity

- Requires clean decay channels: $H o \gamma\gamma, ZZ, (WW)$
- Requires signal definitions such that all experimental efficiencies are independent of production mode
 - Otherwise, efficiency corrections introduce dependence on assumed SM production mode mix
 - Often cannot use MVAs to optimize kinematic signal selection cuts but need simple (rectangular) cuts
 - Sometimes this is just not possible
- Projecting onto several single-differential spectra looses information compared to fully-differential level and introduces statistical overlap
- ⇒ Simplified template cross sections

< 47 >

Simplified Template Cross Section Framework.

Frank Tackmann (DESY)

Simplified Template Cross Sections

2017-06-26 5/21

Construction.

Consider schematic μ fits:

$$\begin{split} \sigma_{1}^{\text{meas}} &= A_{1}^{ggH} \times \mu_{ggH} \times \sigma_{ggH}^{\text{SM}} &+ A_{1}^{\text{VBF}} \times \mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}} \\ \sigma_{2}^{\text{meas}} &= A_{2}^{ggH} \times \mu_{ggH} \times \sigma_{ggH}^{\text{SM}} &+ A_{2}^{\text{VBF}} \times \mu_{\text{VBF}} \times \sigma_{\text{VBF}}^{\text{SM}} \\ \sigma_{3}^{\text{meas}} &= \cdots \end{split}$$

- σ_i^{meas} : measured analysis categories
- A^{ggH}_i, A^{VBF}_i: Acceptances for SM processes (→ theory-dependent)

Construction.

Consider schematic μ fits:

 $\sigma_2^{\rm meas} = \cdots$

- $\sigma_1^{\mathrm{meas}} = A_1^{ggH} \times \sigma_{ggH}$ $\sigma_2^{\mathrm{meas}} = A_2^{ggH} \times \sigma_{ggH}$
- σ_i^{meas} : measured analysis categories
- A_i^{ggH} , A_i^{VBF} : Acceptances for SM processes (\rightarrow theory-dependent)
- First step: Fit for σ_{ggH} , σ_{VBF} rather than μ_{ggH} , μ_{VBF}
 - In the SM correspond to total ggF and VBF production cross sections
 - Can combine channels by assuming or fitting ratios of BR
 - Already available

Construction.

Consider schematic μ fits:

$$egin{aligned} \sigma_1^{ ext{meas}} &= A_1^{ggH} imes & \sigma_{ggH} \ \sigma_2^{ ext{meas}} &= A_2^{ggH} imes & \sigma_{ggH} \ \sigma_3^{ ext{meas}} &= \cdots \end{aligned}$$

•
$$\sigma_i^{ ext{meas}}$$
: measured analysis categories

- A_i^{ggH} , A_i^{VBF} : Acceptances for SM processes (\rightarrow theory-dependent)
- First step: Fit for σ_{ggH} , σ_{VBF} rather than μ_{qqH} , μ_{VBF}

 $= \cdots$

- In the SM correspond to total ggF and VBF production cross sections
- Can combine channels by assuming or fitting ratios of BR
- Already available

 $\sigma_{\rm VBF}$

 $\sigma_{\rm VBF}$

ATLAS+CMS

 $A_1^{\rm VBF}$ ×

 $A_2^{\rm VBF} \times$

ATLAS and CMS

$$\sigma_{1}^{\text{meas}} = A_{1a}^{ggH} \times \sigma_{ggH}^{a} + A_{1b}^{ggH} \times \sigma_{ggH}^{b} + A_{1c}^{\text{VBF}} \sigma_{\text{VBF}}^{c} + \cdots$$
$$\sigma_{2}^{\text{meas}} = A_{2a}^{ggH} \times \sigma_{ggH}^{a} + A_{2b}^{ggH} \times \sigma_{ggH}^{b} + A_{2c}^{\text{VBF}} \sigma_{\text{VBF}}^{c} + \cdots$$
$$\sigma_{3}^{\text{meas}} = \cdots$$

Next step: Split up production cross sections into kinematic regions a, b, c, ...

- Separately fit bin cross sections $\sigma^a_{ggH}, \sigma^b_{ggH}, \sigma^c_{VBF}, ...$
- Bin acceptances A^{ggH}_{ij}, A^{VBF}_{ij} now only need to assume/depend on SM kinematics *inside* a given bin
 - If this becomes a limitation \rightarrow further split the bin
- ⇒ Direct extension of existing framework, can be implemented by experiments straightforwardly on top of existing MC samples

< 47 >

Defining Features.

- Measure cross sections but separated into production modes
 - Allows different efficiencies/acceptances for different production modes without incurring dependence on SM production mode mix
 - SM processes act as kinematic templates
 - Future: Can add more kinematic templates (e.g. CP-odd Higgs)
- Non-Higgs backgrounds are subtracted
 - Future: Can add templates for BSM sensitive backgrounds (e.g. $pp \rightarrow WW$)
- Inclusive over the Higgs decays
 - Can perform a global combination of channels
- "Simplified" bin definitions abstracted from the actual measurement categories
 - Allow some acceptance corrections,
 - Analyses can use optimized selections at reconstruction level, MVAs ...
 - Avoid extrapolations that are unnecessary or nontrivial (i.e. theory sensitive)
- ⇒ Maximize sensitivity while reducing theory dependence

Fiducial: Optimized for maximal theory independence

- Minimize acceptance corrections
- Simple (rectangular) signal cuts
- "Exact" fiducial volume
- Fiducial in Higgs decay
- Targeted object definitions

Agnostic to production modes

(Single-)differential distributions (overlapping events)

Only $H \rightarrow \gamma \gamma, ZZ, (WW)$ (by default no combination of channels)

Simplified: Maximize sensitivity while reducing theory dependence

- Allow larger acceptance corrections
- Allow event categories, MVAs, ...
- Abstracted/simplified fiducial volumes
- Inclusive in Higgs decay
- Common idealized object definitions

Xsec split by production mode

Xsec split into mutually exclusive regions of phase space

Explicitly designed for combination of all decay channels

Identify phase-space regions most important to separate out from theory side

- Where are largest theory systematics? BSM sensitivity?
- Try to minimize residual theory dependence in measurements
 - Avoid non-constant signal acceptance within one bin
 - Try to align cuts with dominant channel/categories to reduce extrapolations

Impossible to define one set of bins perfect for every analysis and theory, so aim to find a good compromise

- Only add additional bins with "sufficiently good reason" (see above)
- Some decay channels will only be able to constrain sum of certain bins and must be able/allowed to combine bins
 - Bins are defined to be mutually exclusive and sum up to parent bin
 - If merged bins have similar acceptance → Bins can be split in the combination (unbiased, only some loss in sensitivity)
 - If merged bins have different acceptance → Split the bins if at all possible, otherwise combine and assign uncertainty in measurement
- Bin definitions can evolve with statistics \rightarrow Staging

Staging.

Define different "stages" for each production mode

- Each analysis implements the binning according to the appropriate stage
- Evolution of different production modes can take place independently
- Bin definitions can evolve with statistics
 - Individual analyses can quote sum of bins while sensitivity is still limited
 - In BSM "overflow" bins even limits are very interesting
 - Can split into more fine-grained bins as required and allowed by statistics (previous determinations remain useful)
- Stage 0: closest correspondence to Run1
- Stage 1
 - All "minimally hoped-for" splits
 - Intermediate steps to get there indicated by "(+)" for possible bin merging
 - Early measurements will show if adjustments are needed (will not make any changes unless serious problems arise)
- Stage 2: to be defined (after gaining more real-life experience)

Stage 0.

Inclusive cross section per production mode

- Closest correspondence to Run1 production-mode μ measurements, but expressed in terms of cross sections and restricted to $|Y_H| < 2.5$
- "VBF" defined as electroweak qqH
 - Split into Run1-like VBF and hadronic VH
- "VH" defined as H + leptonic V
 - Split into WH and ZH, and/or $q\bar{q} \rightarrow ZH$ and $gg \rightarrow ZH$
- Once meaningful, $bar{b}H$ and tH

< (7)

Parameter value norm. to SM value

Frank Tackmann (DESY)

2017-06-26 13/21

Normalized to SM branching ratios for plotting purposes only

Frank Tackmann (DESY)

Simplified Template Cross Sections

2017-06-26 14 / 21

< (7)

Gluon Fusion – Stage 1.

- Jet bins motivated by experimental analyses
- High p_T^H bins target boosted categories $(\tau \tau)$ and BSM overflow
- VBF-like cuts to constrain ggF contribution in VBF categories

< (7)

VBF – Stage 1.

- VBF defined as electroweak qq'H production
 - including usual VBF process and VH with hadronic V decays
- First split by p_T^{j1}
 - ▶ VBF topology cuts: $m_{jj} > 400 \, {
 m GeV}$ and $\Delta \eta_{jj} > 2.8$ (no other cuts)
 - ▶ V(
 ightarrow jj)H topology cuts: $60 \, {
 m GeV} < m_{jj} < 120 \, {
 m GeV}$
 - Rest: Everything not passing above (including events with < 2 jets)

VH – Stage 1.

VH defined as Higgs in association with leptonically decaying V

- ▶ $q\bar{q}
 ightarrow V(
 ightarrow q\bar{q})H$ part of VBF ($gg
 ightarrow Z(
 ightarrow q\bar{q})H$ part of ggF)
- Binning in p_T^V aligned with $H o bar{b}$ (which is main contributor)

Frank Tackmann (DESY)

< (7)

Les Houches: How to Provide Results.

Stage 1 measurements are in progress

- What information should be provided by the experiments and how, so that the results can be used for interpretations?
 - EFT fits, specific BSM models, ... as long as the acceptance used in the measurements is not too different
- Several bins that are weakly constrained and/or strongly correlated
 - Highest p_T bins (most senstive to BSM) will always be statistics limited
 - VBF-like ggF bins and true VBF cannot be easily disentangled
 - Important to take into account correlations but providing full O(30)-dimensional likelihood is unfeasible

First: Assume Gaussian behavior is a good approximation

- Provide full O(30)-dimensional covariance matrices separated by
 - statistical uncertainties
 - total experimental systematic uncertainties
 - combined* theoretical uncertainties
- *Separate out specific theoretical uncertainties that might have to be correlated between the measurement and the interpretation

Frank Tackmann (DESY)

Simplified Template Cross Sections

2017-06-26 18 / 21

< 69 >

Second case (next simplest)

- Still assume Gaussian behavior is a good approximation
- Keep nuisance parameters of those theory uncertainties that might have to be correlated between measurement and interpretation unprofiled
 - Report extended covariance matrix (or Hessian)
 - Precise definition of corresponding uncertainty source and variation

Third case

 In case Gaussian approximation is not good enough for some bins, provide (parametrized) likelihood for these bins

In all cases

- Experiments will need to test if interpretations with these inputs possible
 - Can compare results for reference SM interpretation to using full likelihoods

< 47 >

Les Houches: Planned Binning Updates.

ggF

• Consider to split the highest p_T^H bins into [200, 500] and [500, ∞] to have a dedicated bin for boosted $H \to b\bar{b}$ analyses

Treatment of gg ightarrow Z(ightarrow qar q)H

- $q\bar{q}
 ightarrow Z(
 ightarrow q\bar{q})H$ is considered part of VBF (EW qqH)
- For same reason $gg \to Z(\to q\bar{q})H$ is considered EW correction to ggF (Caused some confusion, conclusion of discussion is to keep it like this)
- In the future could split out ggF 2-jet bins the region $60\,{<}\,m_{jj}\,{<}\,120\,{
 m GeV}$

$bar{b}H$ and $tar{t}H$

- Include bbH in ggF
 - Currently no distinction without dedicated b-tagged reco categories
- Stage 1 has one inclusive bin for $t\bar{t}H$
 - Includes also tH
 - Consider split by p^H_T: [0,200] and [200, ∞] to separate nonboosted and boosted analyses
 - ▶ If useful could split [0, 200] into =0j and \geq 1j (in addition to $t\bar{t}H$ signal jets)

Providing a reference SM interpretation

Parametrization of theoretical uncertainties for ggF, VBF, VH

Including final state observables

- Angular information from $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ currently not available in STXS measurements by construction
- In the measurements, can measure sensitive quantities (e.g. decay angles) in (some) STXS bins
- In principle it should be possible to extend STXS framework to include final state observables (e.g. angular coefficients/POs)

< 行り)

Backup Slides

< 🗗 >

- Definitions of "truth" final-state objects (adapted to current scope)
- Explicitly kept simpler and more idealized than in fiducial cross section measurements
 - Allow comparison with theoretical predictions from both analytic calculations and MC simulations

Higgs boson

- All bins are for an on-shell Higgs boson with a cut $|Y_H| < 2.5$
 - Current measurements have no sensitivity beyond this
 - Once sensitivity to higher rapidity (e.g. using forward leptons in $H \rightarrow ZZ \rightarrow 4\ell$) add an additional otherwise inclusive bin for $|Y_H| > 2.5$
- Treating Higgs as final-state particle is what allows combination of decay channels

< 47 >

Object Definitions.

Leptons from decays of signal vector bosons (i.e. VH)

- Electrons and muons are defined as dressed
- au defined from sum of decay products (for any decay mode)
- No restriction on lepton p_T or rapidity

Signal jets

- Anti- k_t jets with R = 0.4
 - built from all stable particles, including neutrinos, photons, leptons from hadron decays
 - All particles arising from Higgs decay are removed
 - All particles from leptonic decays of signal V bosons are removed
 - Decay products from hadronic decays of signal V are included
- Common p_T^j threshold of 30 GeV
- Truth jets are defined with no restriction on jet rapidity
 - Rapidity cuts can be included in bin definitions if needed

< 47 >

Gluon Fusion – Stage 2.

Possible options for stage 2

- High p_T^H bin can be split further (in particular if evidence for new heavy particles arises)
- Low p_T^H region can be split further to further reduce any theory dependence there
- Further split $N_j \ge 2$ into $N_j = 2$ and $N_j \ge 3$

< (7)

VBF – Stage 2.

Possible options for stage 2

- Add sensitivity to CP odd contributions
- Rest: Further separate out looser VBF cuts and/or 0+1 jet
- Further separate high p_T^{j1}

VH – Stage 2.

Possible options for stage 2

• Separate Z decays, further split high p_T^V

Frank Tackmann (DESY)

2017-06-26 26 / 21