Superior radiation hardness of 3D pixel sensors up to unprecedented fluences of $3e16 n_{eq}/cm^2$

Jörn Lange, Sebastian Grinstein, Stefano Terzo, David Vázquez Furelos

IFAE Barcelona

Maria Manna, Giulio Pellegrini, David Quirion

CNM-IMB-CSIC Barcelona

6th BTTB Workshop, Zürich, 19 January 2018

3D Silicon Pixel Detectors Overview

HL-LHC

- 3D Silicon detectors: radiation-hard sensor technology
 - Electrode distance decoupled from thickness
 S. Parker et al.
 → fast charge collection, trapping reduced
- Already applied in ATLAS IBL, AFP, CT-PPS
 - Radiation hardness up to 5e15 n_{eq}/cm² required and proven
- Future HEP applications require more radiation hardness and small pixel sizes
 - HL-LHC pixel detectors (2024)
 - Full 4000 fb⁻¹: 2.5e16 n_{eq}/cm² innermost layer (ATLAS ITk)
 - But FE chip not specified to be so radiation hard
 → Baseline requirement: 1.3e16 n_{eq}/cm² (replacement of 2 inner layers)
 - 50x50 μm² or 25x100 μm² pixel size to cope with occupancy
 - LHCb phase II (2030):1e17 n_{eq}/cm²
 - FCC-hh (far future): 7e17 n_{eq}/cm²
- Aim: Develop new generation of ultra-radiation-hard 3D pixels
 - In the framework of ATLAS HL-LHC pixel upgrade
 - But exploring limits of technology

3D Pixel Strategy Barcelona

1.

2.

3.

Beam Tests and Irradiations

Many thanks to

7 Irradiation campaigns

- KIT 23 MeV p: uniform 5e15 and 1e16 n_{eq}/cm^2
- PS IRRAD 23 GeV p: non-uniform 12 or 20 mm beam \rightarrow allows probing a large range of fluences on single pixel device
 - Reached up to 3e16 n_{eq}/cm²
- FEI4 chip survived harsh doses beyond specs in many cases! (though not all)

6 beam tests at CERN SPS H6, 120 GeV pions, EUDET-type telescope

Device	Irradiations	Fluence peak step	Fluence peak total	Annealing	Beam test
		[1e16 n _{eq} /cm²]	[1e16 n _{ea} /cm²]		
7781-W4-C1, 50x50	PS1 20mm 2016	1.5	1.5	7d@RT	Sep 2016
	PS3 20mm 2017	1.1	2.6	18d@RT	July 2017
	PS4 20mm 2017	0.6	3.1	15d@RT	Not working
7781-W5-C2, 50x50	KIT1 2016	0.5	0.5	8d@RT	Nov2016
	PS3 20mm 2017	1.0	1.5	18d@RT	Not working
7781-W3-C1, 50x50	KIT1 2016	0.5	0.5	8d@RT	Nov 2016
	PS2 12mm 2016	0.7	1.2	15d@RT	
	PS3 20mm 2017	1.1	2.3	18d@RT	July 2017
	PS4 20mm 2017	0.5	2.8	15d@RT	Oct 2017
	PS5 20mm 2017	~0.5	~3.3	21d@RT	2018?
7781-W4-E, 50x50	KIT2 2017	1.0	1.0	as irrad.	July2017
				7d@RT	Sep+Oct 2017
7781-W3-E, 50x50	Unirr.				Sep 2017

19.01.2018, Jörn Lange: Radiation-hard 3D Detectors

Efficiencies before Irradiation

J. Lange et al., 2016 JINST 11 C11024 (plus new data)

Test beam with EUDET/AIDA telescope

- Reference tracks with few µm resolution

 → select Region of Interest (ROI) within 20% active region
 and away from telescope resolution effects
- 98% plateau efficiency starting at 0 V!
 - Consistent with high charge collection at 0 V in small-pitch 3D strips
 - Thanks to small electrode distance (28-35 μm)

Uniform Irradiation at KIT

3D CNM, 50x50 µm² 1E, d=230 µm, 1ke⁻ 10ToT@20ke, p irrad (KIT)

- ToT and efficiency very uniform over pixel: effect of 3D columns only dominant at low V
- ToT: high charge collection efficiency after irrad.
- Efficiency: already 97% at 40 (100) V for 5e15 (1e16) n_{eq}/cm² at 0° tilt
 - Significantly better than for standard IBL/AFP FEI4
- Further improves at 15° tilt

CNM 230 µm, p irrad (KIT)

PS Non-Uniform Irradiation - Methodology

- Fluence normalization obtained with 20x20 mm² Al dosimetry foil
- Profile from
 - Beam profile monitors: 12-20 mm FWHM
 - Also made fluence maps by pixelating Al foil
- Beam position
 - From Al foil profile
 - For first irradiations also in-situ from pixel measurements (eff., noise, threshold before tuning, TDAC after tuning etc.) PS2, 7781-W3-C1

Profile from Al foil PS3

🚝 🎙 19.01.2018, Jörn Lange: Radiation-hard 3D Detectors

PS Non-Uniform Irradiation - Uncertainties

- Introduce variations by +/- 1 mm in beam σ , beam centre offset, Al foil offset (both x, y)
- Vary in all combinations
- Determine maximum deviation from default value (envelope) for all variation combinations
 → take as systematic uncertainty (conservative)
- 15-20% uncertainty at highest fluence, 45% (70%) at lowest fluence for 20 (12) mm beam

Efficiency vs. Fluence

W4-C1 PS1

W4-C1 PS3

²⁴ ²⁶ ²⁸ Fluence [10¹⁵ n_{eq}/cm²]

0.8

18

20

22

- Large range of fluence on single device
- Efficiency decreases with fluence at low voltage
- Efficiency improves with voltage
- **NB:** Fluence uncertainties large at low fluence range (~50%)

20

Fluence $[10^{15} n_{eq}/cm^2]$

0.82

0.8

80 V

16

18

14

Efficiency vs. V Compilation

- Compile only at (or close to) highest fluence with lowest uncertainty (~15-20%)
- Also KIT uniform irradiation added
 - PS+KIT agree well at 1e16 n_{eq}/cm²

 98% plateau efficiency reached even after
 2.7e16 n_{eq}/cm²

Operation Voltage vs. Fluence

- V_{97%}: estimate of operation voltage
- Highly improved operation voltage for 50x50 µm² 3D compared to IBL/AFP generation
- At ITk baseline fluence of 1.3e16 n_{eq}/cm² only 100 V needed
 - Thin planar needs ~500 V
 N. Savic et al., JINST 11 (2016) C12008
- Even at 2.7e16 n_{eq}/cm²: V_{97%} < 150 V

Conclusions and Outlook

- Studied 230 µm CNM 3D production with small pixel size up to unprecedented fluences of 3e16 n_{eq}/cm² beyond full ITk fluences
 - First time pixel devices irradiated to such high fluences (and survived)
 - Highly reduced operational voltage and power dissipation wrt. IBL/AFP generation and planar after irradiation
 - 98% efficiency at 0 V before irradiation
 - 97% efficiency at 100 V and 13 mW/cm² for 1.4e16 n_{eq}/cm^2 \rightarrow safe operation at ITk baseline fluence (1 replacement)
 - 97% efficiency reached at <150 V after 2.7e16 n_{eq}/cm²
 - No indication that limit has been reached...
- Single-sided thin (72-150 µm) 3D productions under way at CNM
 - Also with RD53A-chip geometry in addition to FEI4 prototypes
 → expected to have even better performance with new optimised readout chip

Unprecedented radiation hardness of 3D pixel detectors demonstrated

50x50 μm²

BACKUP

3D Detector Principle

Radiation-hard and active/slim-edge technology

Advantages

- Electrode distance decoupled from sensitive detector thickness
 - \rightarrow lower V_{depletion}
 - \rightarrow less power dissipation, cooling
 - \rightarrow smaller drift distance
 - \rightarrow faster charge collection
 - \rightarrow less trapping
- Active or slim edges are natural feature of 3D technology

Challenges

- Complex production process
 → long production time
 - \rightarrow lower yields
 - \rightarrow higher costs
- Higher capacitance
 → higher noise
- Non-uniform response from 3D columns and low-field regions → small efficiency loss at 0°

Different 3D Technologies

- Double sided (available at CNM)
 - IBL/AFP-proven technology
 - No handling wafers needed
 → thickness limited to ≥200 µm and wafers to 4"
 - 3D columns ~8 µm diameter
- Single sided (available at FBK, SINTEF, CNM)
 - On handling wafer (SOI or Si-Si bonding)
 → 6" possible (FBK, SINTEF)
 - Active thickness range 50-150 µm being explored
 - Narrow 3D columns ~5 µm possible

Double-sided

G. Pellegrini, CNM

IV and Power Dissipation

- Important parameters for thermal run away
- From one pixel device only extractable for uniform irrad. (KIT)
 - At fixed V, 50x50 µm² has higher I_{leak}, but same at V_{97%}
 - Power dissipation improves due to lower V_{97%}
 - For non-uniform PS irradiation PS, V_{97%} from test beam efficiency combined with n-irradiated 3D strip IV
 - Considerably lower P than for IBL 3D gen. and planar devices (25 mW/cm² at 1e16 n_{eq} /cm²) N. Savic et al., JINST 11 (2016) C12008

New CNM 3D Runs: Thin + RD53A

- Thin 3D run with small-pitch FEI4 prototypes just finished
 - 100 and 150 μm single-sided on SOI wafers
 - Probing and dicing on-going

3D runs with RD53A sensors on-going

- Single-sided 72, 100+150 μm on SOI and double-sided 200 μm
- 50x50 μm² 1E, 25x100 μm² 1E and 2E
- Production on-going \rightarrow expected for end of year
- UBM + flip-chip to be done in-house by CNM + IFAE

\rightarrow sensors expected on time for arrival of RD53A

First Small-Pixel CNM Run for HL-LHC

D. Vázquez Furelos et al., 2017 JINST 12 C01026 J. Lange et al., 2016 JINST 11 C11024

- Run 7781 finished in Dec 2015 (RD50 project)
- 5x 4" wafers, p-type, 230 µm double-sided, nonfully-passing-through columns (a la IBL)
- Increased aspect ratio 26:1 (column diameter 8 µm)
- **First time small pixel size 25x100+ 50x50 µm²** (folded into FEI4 and FEI3 geometries)

Also strips and diodes down to 25x25 μm² 3D unit cell

Sample Characterisations

Pixel Geom.	C/el. [fF] (*)	C/pixel [fF] (*)	Noise [e]
25x100 2E	42	84	160
50x50 1E	37	37	105-140

(*) from pad diodes

D. Vázquez Furelos et al., 2017 JINST 12 C01026

- Pixel devices bump-bonded and assembled at IFAE
- IVs
 - V_{BD} ~ 15-40 V
 - Improved in new productions after CNM process optimization S. Grinstein et al., JINST 12 (2017) C01086
- C <100 fF/pixel (within RD53 limit)
- Noise 100-160 e similar to standard 3D FEI4s
- Sr90 source scans on pixels
 - Similar charge as in standard FEI4s

Sr90 and laser scans on strips

- 17 ke charge as expected for both 50x50 μm² and 30x100 μm² (unirr.)
- Almost full charge even at 0-2 V \rightarrow low V_{dep} due to low L_{el}
- Uniform even after 1e16 n_{eq}/cm²
- Measurements up to 2e16 n_{eq}/cm² in progress

Efficiency before Irradiation

p*

n+

State of the Art: IBL/AFP Generation

- 230 µm thick sensors by CNM and FBK (double-sided)
- FEI4s: 50x250 μm² 2E, 67 μm inter-el. distance
- Radiation hardness up to 5e15 n_{eq}/cm² established (IBL)
- Explored limits further with irradiations up to HL-LHC fluences
 - At 9.4e15 n_{eq}/cm²: 97.8% efficiency at 170 V!
 - Power dissipation 15 mW/cm² at 1e16 n_{eq}/cm² and -25°C

\rightarrow Good performance at HL-LHC fluences even for existing 3D generation

