

6th Beam Telescopes and Test Beams Workshop 16th – 19th January 2018 Zurich

P.Riedler, CERN | BTTB2018, Zurich

Monolithic Silicon Pixel Detectors in HEP

Petra Riedler, CERN EP-DT

January 16, 2018

Outlook

- Pixel detectors hybrid and monolithic
- A variety of monolithic pixels
- Examples of monolithic pixel detectors in HEP
- Future developments
- Summary

Pixel detectors – hybrid and monolithic

NMOS

p-well

n-we

Hybrid Pixels – Monolithic Pixels

- Separately optimize sensor and FE-chip for very high radiation environment
- Fine pitch bump bonding to connect sensor and readout chip
- Charge generation volume integrated into the ASIC, but many different variants!
- Thin monolithic CMOS sensor, on-chip digital readout architecture

Hybrid Pixels

Offer a **number of pros due to the split functionality** of sensor and readout:

- complex signal processing in readout chip
- zero suppression and hit storage during L1 latency
- radiation hard chips and sensors to >10¹⁵ n_{eq}/cm²
- high rate capability (~MHz/mm²)
- spatial resolution ≈10 15 µm
- Potential from C2W and W2W assembly

There are also some aspects which are more cons:

- relatively large material budget: >1.5% X₀ per layer
- resolution could be better
- complex and laborious module production
- bump-bonding / flip-chip
- many production steps
- expensive

But hybrid pixels are extremely successful and if you look at today's LHC experiments...

$Z \rightarrow \mu\mu$ event with 25 reconstructed vertices.

Pixels are installed in the regions closest to the IP

January 16, 2018

LHC Pixel Environment

Given by LHC radiation levels, hit rates and bunch structure

- 25ns
- L1 trigger rate

Outer Pixel layers

- Occupancy 1MHz/mm²
- NIEL ~ 10^{15} neq/cm²
- TID ~ 50Mrad
- Larger area O(10m²)

Inner Pixel layers

- Occupancy 10MHz/mm²
- NIEL ~ 10^{16} neq/cm²
- TID ~ 1Grad
- Smaller area O(1m²)

A variety of monolithic pixels

CMOS Active Image Pixel Sensors

- CMOS active image pixel sensor developed by NASA/JPL (patents by Caltech) in 1992, plus proposals in HEP*
- Used (vanilla) CMOS process available at many foundries → easily accessible
- First versions contained in-pixel source follower amplifier for charge gain, low noise Correlated Double Sampling, basis for camera-on-chip
- Though specialized fab processes are required, the market has driven developments leading to CMOS sensors dominating the field.

ER Fossum, CMOS Active Pixel Sensors – Past, Present and Future, 2008 https://pdfs.semanticscholar.org/6d85/af67a846d13b7e7502f7fa96c0729c972590.pdf

January 16, 2018

*In HEP, e.g. S. Parker, A proposed VLSI pixel device for particle detection NIMA 275 (1989), 494-516

CMOS Active Image Pixel Sensors

- While 1980s were dominated by CCDs (camcorder market)
- The 1990s/2000s have shown an increasing demand for CMOS imaging sensors due to the camera phone market

CMOS Active Image Pixel Sensors

What are the advantages of CMOS imaging sensors (camera-onchip) in industry? For example:

- Low power, important for portable devices
- Compact cameras due to system-ona-chip
- Fewer components needed

ER Fossum, CMOS Active Pixel Sensors – Past, Present and Future, 2008 https://pdfs.semanticscholar.org/6d85/ af67a846d13b7e7502f7fa96c0729c97

2590,pdf

January 16, 2018

Camera-on-a-chip

- Pixel array
- Signal chain
- ADC
- Digital logic
 - I/O interface
 - Timing and control
 - Exposure control
 - Color processing
- Ancillary circuits

2007 IISW

Monolithics in HEP?

Silicon trackers are part of the core tracking systems of all present LHC experiments.

Monolithic pixel detectors can offer a number of interesting advantages for HEP experiments:

- Commercial process (8" or 12" wafers)
- Multiple vendors
- Potentially cheaper interconnection
 processes available
- Thin sensor (50-100 um) have less material and reduce cluster size at large eta
- ... Strong interest in monolithic pixels, with many different variants!

Diode + Amp + Digital

MAPS (Monolithic Active Pixel Sensors) for Imaging and More

Many developments in the field of CMOS imaging sensors and MAPS in general within the community!

Example: Wafers scale (8") imaging sensor developed by the RAL team (stitched)

N. Guerrini, RAL, 5th school on detectors, Legnaro, April 2013

Developments lead by IPHC created a number of monolithic pixel sensors of the MIMOSA family:

MAPS

- Epitaxial wafers with collection diode and few transistors per cell (size ~ 20 x 20 µm²), limited to NMOS transistors
- 0.35 µm CMOS technology with only one type of transistor
- Rolling shutter architecture (readout time O(100 µs))
- Charge collection mostly by diffusion
- Limited radiation tolerance (< 10¹³ n_{eq} cm⁻²)

P.Riedler, CERN | BTTB2018, Zurich

p-epi

p++ substrate

recombinatio

16

"Passive" CMOS Sensors

N. Wermes HSTD11, Okinawa, 2017

LFounry 150 nm CMOS technology

 $2k \Omega cm p$ -type bulk

- can have in-pixel AC coupling
- fancy **RDL** possibilities by metal layers
- Cheap, large feature size technology possible
- no extra bumping step, because bumps (C4) come with CMOS fabrication
- do flip-chipping in-house (large pitch)
- large sensors possible (\rightarrow reticule stitching)
- may be even wafer based flip-chipping (8")

D.-L. Pohl et al., JINST 12 (2017) no.06, P06020

January 16, 2018

P.Riedler, CERN | BTTB2018, Zurich

Performance of Passive CMOS Sensors

N. Wermes HSTD11, Okinawa, 2017

P.Riedler,

DEPFET

- Depleted p-channel FET on high resistivity substrate (Kemmer & Lutz, 1987)
- First stage amplification in pixel
- Fully depleted bulk
- Charge is stored underneath an internal gate causing a modulation in the transistor current
- Charge needs to be cleared after readout
- Requires off-chip read-out circuitry
- Used in the BELLE II pixel detector upgrade

Belle II Pixel Detector at SuperKEKB: DEPFET

Pixel detector based on **DEPFET** sensors

- 2 barrel layers (r=1.4 cm and 2.2 cm)
- Pixel size 50 µm x 75 µm
- Row-wise read-out (rolling shutter), 20 µs/frame
- Special thinning of the matrix area to reduce material budget (75 µm thick)

S. Tanaka, HSTD9, 2013

Radiation environment:

- ~ 1.9 Mrad / year
- $\sim 1.2 \ 10^{13} \ 1 MeV \ n_{eq}/cm^2 \ per \ year$

Material budget: 0.21 % X₀ per layer

January 16, 2018

SOI - Silicon On Insulator

- SOI wafer with high resistivity sensor part and thin CMOS chip connected via oxide
- Fully depleted thick sensing region with low C, offers good Q/C
- Is one of the ways to integrate large amount of in-pixel circuitry
- Main issues (back-gate effect, signal cross talk and radiation tolerance) being addressed by using burried wells, double SOI and pinned depleted diodes.

Y. Arai, HSTD11, Okinawa 2017

Examples of monolithic pixels in HEP

In the remaining part of the presentation, focus on MAPS, their applications in HEP and future developments for high radiation environment.

MAPS Evolution

L. Musa, 30 years HI Forum November 2016

Owing to the industrial development of CMOS imaging sensors and the intensive R&D work (IPHC, RAL, CERN)

... several HI experiments have selected CMOS pixel sensors for their inner trackers

STAR HFT 0.16 m² - 356 M pixels

CBM MVD 0.08 m² - 146 M pixel

ALICE ITS Upgrade (and MFT) 10 m² - 12 G pixel

sPHENIX 0.2 m² – 251 M pixel

January 16, 2018

P.Riedler, CERN | BTTB2018, Zurich

30

STAR Heavy Flavour Tracker

The upgrade of the STAR HFT included also the installation of the first MAPS based vertex tracker at a collider experiment.

DCA Pointing resolution	(10 ⊕ 24 GeV/p⋅c) μm		
Layers	Layer 1 at 2.8 cm radius Layer 2 at 8 cm radius		
Pixel size	20.7 μm X 20.7 μm		
Hit resolution	3.7 μm (6 μm geometric)		
Position stability	5 μm rms (20 μm envelope)		
Material budget first layer	$X/X_0 = 0.39\%$ (Al cond. cable)		
Number of pixels	356 M		
Integration time (affects pileup)	185.6 μs		
Radiation environment	20 to 90 kRad / year 2*10 ¹¹ to 10 ¹² 1MeV n eq/cm ²		
Rapid detector replacement	< 1 day		

After R&D and prototyping the construction of <u>3</u> trackers started in 2013.

STAR HFT

Basic Detector Element

Ladder with 10 MAPS sensors (~ 2×2 cm each)

Mechanical support with kinematic mounts (insertion side)

10 sensors / ladder 4 ladders / sector 5 sectors / half 10 sectors total

carbon fiber sector tubes (~ 200 μ m thick)

STAR HFT

- DCA pointing resolution
- Design requirement exceeded: 46 µm for 750 MeV/c Kaons for the 2 sectors equipped with aluminum cables on inner layer
- ▶ ~ 30 µm for p > 1 GeV/c
- From 2015: all sectors equipped with aluminum cables on the inner layer

 $D^0 \rightarrow K \pi production$ in $\sqrt{s_{NN}}$ = 200GeV Au+Au collisions (partial event sample)

- Counts (per 10 MeV/c²) Physics of D-meson productions
 - High significance signal
 - Nuclear modification factor R_{AA}
 - Collective flow V_2
- First Λ_c^+ signal observed in HI collisions (QM 2017)!

Radiation Tolerance

Transistor radiation tolerance comes "for free" for deep sub micron processes and improved design layout.

Charge collection by diffusion suffers from radiation damage beyond 10¹³ n_{eq} cm⁻²!

MAPS – next step

TowerJazz 0.18µm CMOS imaging process

- N-well collection electrode in high
 resistivity epitaxial layer (>1kOhmcm)
- Present state-of-art based on quadruple well allows full CMOS
- High resistivity (> 1kΩ cm) epi-layer
 (p-type, 20-40 µm thick) on p-substrate
- Moderate reverse bias => increase depletion region around Nwell collection diode to collect more charges by drift

ALICE Inner Tracking System Upgrade

Based on high resistivity epi layer MAPS

3 Inner Barrel layers (IB)4 Outer Barrel layers (OB)

Radial coverage: 21-400 mm

~ 10 m²

 $|\eta|$ < 1.22 over 90% of the luminous region

0.3% X₀/layer (IB) 0.8 % X₀/layer (OB)

Radiation level (IB, layer 0): TID: 2.7 Mrad, 1.7 x 10^{13} 1 MeV n_{eq} cm⁻²

Installation during LS2

ALCONTRACTOR STOCKAST

ALPIDE Chip

- Pixel size: 29 x 27 µm² with low power frontend (40 nW)
- Small n-well diode (2 µm diameter), ~ 100 times smaller than pixel size
- Asynchronous sparsified digital readout
- Power density ~300 nW/pixel
- Minimized inactive area on the edge due to pads-over-matrix design (~ 1.1 x 30 mm²)
- Full size prototypes produced on different epitaxial wafers
- Partial depletion of the sensitive region due to back bias

ALPIDE Chip Performance

- Large operational margin before and after irradiation up to 10 x lifetime NIEL
- Chip-to-chip fluctuations negligible
- Fake hit rate << 10⁻⁵

ALICE ITS upgrade

- Production ongoing with installation during LHC LS2.
- Very light weight design with $0.3\% X_0$ in the innermost layers and $0.8\% X_0$ in the outer layers.
- Largest area pixel detector based on monolithic pixels (MAPS) produced so far.

Picture: one outer barrel stave with ~ 100 M pixels

Future developments

Challenges for the Future

Increased luminosity requires

- Higher hit-rate capability
- Higher segmentation
- Higher radiation hardness
- Lighter detectors

Radiation hardness improvement compared to now

• Phase-2 approx. factor 10-30

Can MAPS be ready for this environment?

Present MAPS offer a number of very interesting advantages, but the diffusion is a limiting factor.

In a (very) high radiation environment ($10^{15}-10^{16} n_{eq}/cm^{2}$):

- The ionization charge is trapped/recombined in the non-depleted part → no more signal.
- Diffusion makes signal collection slower than typical requirements for pp-colliders.

Readout architectures are low power, but not designed for high rates like p-p at LHC.

CMOS for Future Trackers

	ALICE ITS	ATLAS Outer Pixel	ATLAS Inner Pixel
NIEL [n _{eq} /cm ²]	10 ¹³	10 ¹⁵	10 ¹⁶
TID	<1Mrad	80 Mrad	2x500Mrad
Response Time [ns]	2000	25	25
Hit rate [MHz/cm ²]	10 + SF	100-200	2000

Key parameters need factor up to ~100 Performance gain

H. Pernegger, HSTD11, Okinawa, 2017

- Collect signal by drift through fully depleted sensor (DMAPS):
- **Dedicated designs** for high hit rates and fast response
 - New architecture developments to cope with high hit rates
- CMOS sensor post processing and module integration
 - Large area module concept and new interconnects technology for dedicated CMOS modules

MAPS for the Future

Different types of MAPS are under study, with the aim to achieve radiation hardness through depletion, high rate capability, low power,

Enabling technologies are now available, which were not there some

years ago ,e.g.:

"High" Voltage add-ons	Special processing add-ons (from automotive and power management applications) increase the voltage handling capability and create a depletion layer in a well's pn-junction of $o(10-15 \ \mu m)$.			
"High" Resistive Wafers	8" hi/mid resistivity silicon wafers accepted/qualified by the foundry. Create depletion layer due the high resistivity.			
Technology features (130-180 nm)	Radiation hard processes with multiple nested wells . Foundry must accept some process/DRC changes in order to optimize the design for HEP.	Isolated Drain NDMOS n+Poly PBody Oriff pBarrier Isolating nWell pEpi pSub		
Backside Processing	Wafer thinning from backside and backside implant to fabricate a backside contact after CMOS processing.	from: www.xfab.com		

Depletion and Fill Factor

To better **deplete the active volume**:

- Use high resistivity (epi) wafers (~kOhmcm)
- Apply bias voltage

The **fill factor** will affect how the depletion region grows:

Large fill factor

- Uniform charge collection
- Large capacitance (~50-200 fF) on CSA
- More power necessary to achieve fast signals with reasonable amplitude

Small fill factor

 Higher gain and faster response due to smaller capacitance (2-5fF) and higher Q/C

 $d \propto \sqrt{}$

- Potentially lower power consumption
- Signal collection under DPW after irradiation more difficult on edges

Examples: Large Fill Factor

An example of large electrode pixel sensors are the development lines in the LFoundry and in AMS processes.

LFoundry:

- L-Foundry 150 nm process (deep N-well/P-well) ٠
- Up to 7 metal layers •
- Resistivity of wafer: >2000 Ω·cm •
- Small implant customization
- Backside processing

P. Rymaszewski et al., JINST 11 (2016) 02 C02045 T. Hirono et al., doi:10.1016/j.nima.2016.01.088

LFoundry Development Line

CCPD_LF

- Subm. in Sep. 2014
- 33 x 125 µm² pixels
- Fast R/O coupled to FE-I4
- Standalone R/O for test
- (Almost) Fully
 characterized

LF-CPIX (DEMO)

- Subm. in Mar. 2016
- CPIX demonstrator in LF
- 50 x 250 µm² pixels
- Fast R/O coupled to FE-I4
- Standalone R/O for test
- First meas. available

LF-Monopix01 (monolithic)

- Subm. in Aug. 2016
- "Demonstrator size"
- 50 x 250 µm² pixels
- Fast standalone R/O
- Standalone R/O like LF-CPIX

AMS Development Line

Capacitively Coupled Pixel Detectors (H18 AMS

- Capacitive-Coupling of CMOS sensor to ATLAS FEI4 (sensor pixel size 33x 125um2)
- Blocks for monolithic design implemented an studied (DAC,Amplifier, Discriminators, Configuration)
- Efficiency of > 99.5%
- Signal collected in 3BC

T. Weston/ Uni Bern @ TREDI 2017 Mathieu Benoit / Uni Geneve

H18 CCPDv5

- First prototype in aH18 process (Hi-Resistivity wafer processing)
- Many beam tests carried out to test operation, tuning, achievable threshold and efficiency
 - 600-650e Threshold

Example: Small Fill Factor

Small input capacitance of few fF compared to hybrid pixels (O (100fF, IBL))* or large fill factor MAPS \rightarrow beneficial for timing, noise and power!

1. Input capacitance drives peaking time and ENC \rightarrow low input capacitance will reduce peaking time and ENC

2. Analog power: depends on collected charge over capacitance Q/C in the pixel \rightarrow optimize sensing node**

$$P \sim \left\{ \frac{\frac{s}{N}}{\frac{Q}{c}} \right\}^m \text{ with } 2 \le m \le 4$$

Collection diode ~ 2-3 µm ø, C~ O(few fF) 27 µm x 29 µm pixel T. Kugathasan, W. Snoeys

But collection underneath deep p-Well is limited due to depletion limit...

*Havranek et al, NIMA 714 (2013) 83-89 ** W. Snoeys, NIM. A765 (2014) 167-171

TJ 180 nm modified process

- Novel modified process developed in collaboration of CERN with TJ foundry, originally developed in context of ALICE ITS.
- Combined with a small collection diode.

- Adding a planar n-type layer significantly improves depletion under deep PWELL
- Increased depletion volume \rightarrow fast charge collection by drift
- better time resolution reduced probability of charge trapping (radiation hardness)
- Possibility to fully deplete sensing volume with no significant circuit or layout changes

TowerJazz 180nm Investigator

2-18 um

- Pixel dimensions for the following measurements:
- 20x20 to 50x50um² pixel size
- 3 um diameter electrodes 25um EPI layer

Designed as part of the ALPIDE development for the ALICE ITS upgrade

Emphasis on small fill factor and small capacitance enables low analog power designs (and material reduction in consequence)

C. Gao et al., NIM A (2016) 831 http://www.sciencedirect.com/science/article/pii/ S0168900216300985

J. Van Hoorne, proceedings of NSS2016 http://2016.nss-mic.org/nss.php

Produced in TowerJazz 180nm on 25-30um thick epi layer in the modified process

Design: C. Gao, P. Yang, C. Marin Tobon, J. Rousset, T. Kugathasan and W. Snoeys

P.Riedler, CERN | BTTB2018, Zurich

After 10¹⁵ n_{eq}/cm² and 1Mrad TID

Very little signal loss after 10¹⁵, also very encouraging results on detection efficiency. Signal well separated from noise.

Measurements on samples irradiated to $10^{16} n_{eq}/cm^2$ ongoing.

H. Pernegger, Terascale Detector Workshop, DESY, April 2017

Charge versus collection time

- Calibrated charge signal in ⁹⁰Sr source tests
 - Calibration of mV to e- by ⁵⁵Fe source tests H. Pernegger, Terascale Detector Workshop, DESY, April 2017
 - Better timing with modified process (narrower collection time distribution)

Beam test results

Unirradiated sensor efficiency 98.5% ± 0.5% (stat.) ± 0.5% (sys.) (50x50 μm²)

• Irradiated sensor also shows uniform efficiency across 25x25 µm² pixel

H. Pernegger, Terascale Detector Workshop, DESY, April 2017

Monolithics for the future

- Very encouraging results from the different development lines (large and small fill factor designs, different starting materials, etc...)
- Testing of key parameters:
 - Radiation hardness
 - Timing
 - Efficiency

Results extremely encouraging

...to large size Chips

- Following the encouraging results obtained from test chips, larger size chips (O(cm²) have been designed and processed.
- These chips are available for module assembly!

TowerJazz 180 nm epitaxial (25 µm) substrate $\rho > k\Omega$ cm

Chip name	Technology	CE Size*	Pixel size [µm ²]	R/O architecture	Staust
aH18	AMS 180nm	Large	56 × 56	Asynchronous	Measurements
Malta	TowerJazz 180nm	Small	36 × 36	Asynchronous	Submitted
TJ Monopix		Small	36 × 40	Synchronous	Back after Xmas
LF Monopix	LFoundry 150 nm	Large	50 × 250	Synchronous	
Coolpix		Large	50 × 250	Synchronous	Measurements
LF2		Large	50 × 50	Synchronous	

* CE Size = Collection Electrode Size

ATLAS Pix & MuPix AMS 180 nm

MONOPIX, LF2 & COOLPIX Lfoundry 150 nm

W. Snoeys, HSTD11, Okinawa, 2017

Example: MALTA & MONOPIX

- Uses TJ180nm modified process
- Full-scale demonstrators with different readout architectures and optimized analog performance
 - MALTA: 20x22 mm² (full size)
 - MonoPix : 20x10 mm² (half size)

MALTA Module

40mm

Chip-to-Chip data interconnection

- Modules consisting of 4 MALTA chips (activity starting)
- Compatible with ATLAS Itk pixel module
- Use chip-to-chip connection pads to transfer data from one chip to the next

H. Pernegger, HSTD11, Okinawa, 2017P.Riedler, CERN | BTTB2018, Zurich54

Module Building

- Typical chip sizes O(few cm²) → not ideal for covering large surfaces O(10s of m²)
- Need larger chips and new assembly technologies to build low cost large area module
- Explore CMOS options such as, e.g.:
 - Stitching
 - RDL to enable chip-to-chip connections for power and data
 - Pad over logic, etc.

And if it would be flexible?

http://image-sensors-world.blogspot.fr/2014/06/

Cylindrically Curved CCD (Convex)

Summary

- Monolithic pixel detectors are being studied intensively for their use in HEP experiments. They provide potentially low cost high precision tracking sensors.
- Many different versions are under study, tackling the issues to make such detectors suitable for high radiation and high rate environments.
- Several experiments (ALICE, BELLE II, STAR) have chosen monolithic pixels for their upgrade.

