

Test Beam Results of Sensors with Modified Pixel Implantations

6th BTTB Workshop 2018 16/01/2018 – 19/01/2018

Mareike Weers

Silke Altenheiner, Sascha Dungs, Andreas Gisen, Claus Gößling, Valerie Hohm, Reiner Klingenberg, Kevin Kröninger, Raphael Michallek, Anna-Katharina Raytarowski

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

REINER Pixel Design

REdesigned, INnovative, Exciting and Recognizable

- Pixel size: 250 µm x 50 µm (same as for IBL, Innermost detector of the ATLAS Experiment)
- Six modified designs
 - Three divided in 4/10/18 sub implants
 - One with rectangular corners
 - Two with narrowed n^+ implant

V0: IBL-standard V1-V6: modified

Blue: n⁺ Grey: metal Green: Ni openings

- n⁺-in-n wafer process
- Sensor thickness 200 µm

REINER Pixel Sensors

- Eight structures on one sensor
 - Two IBL designs (V0 & 05)
 - Six modified designs
- Each structure consists of 10 columns x 336 rows with the same design
- Separate HV pads
- Individual guard rings
- Readout by one FE-I4

August 2016

- 120 GeV Pions
- ACONITE Telescope
- Chiller: -40°C
- R1: irrad. to 5 x 10¹⁵ n_{eq}/cm², Neutrons in Sandia
- R2: non-irrad.
- Different sensor positions, tunings, voltages

July 2017

- 40 GeV Pions
- AIDA Telescope
- Dry ice
- R2: irrad. to ~6 x 10¹⁵ n_{eq}/cm², Protons at CERN PS
- Different sensor positions, tunings, voltages

Testbeam Analysis: TBMon2

So far:

Efficiency (complete sensor)

[ETTICIENCY]: ETTICIENCY (MATCH; NO Edge pixels included): 0.9588/1 +- 0.000131935
[Efficiency]: DUT 24
[Efficiency]: Tracks raw: 6641152
[Efficiency]: Tracks good: 2322248
[Efficiency]: Tracks good region: 946581
[Efficiency]: Tracks: 946581
[Efficiency]: Tracks w/ hit: 664785
[Efficiency]: Efficiency (match; no edge pixels included): 0.702301 +- 0.000469971
[Efficiency 1: DUT 25

EfficiencyVsRun (complete sensor)

Efficiency Matched Tracks Vs Run DUT 24

Testbeam Analysis: TBMon2

- TBMon2: Groups pixel in geometries
- REINER sensor: Interested in efficiency of each geometry
- (Special pixel type on quad sensors)

- New Tool: EfficiencyVsGeometry
 - Uses geometries
 - Efficiency vs run for each geometry
 - Efficiency vs geometry

Branch: dortmund.dev

Testbeam Analysis: TBMon2

EfficiencyVsGeometry Output:

[E	fficiencyVsGeometry]:		Geometry:	5	run:	1376	Efficiency:	0.715027	+ -	0.00377997	tracks:	14261
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1377	Efficiency:	0.710806	+ -	0.00394953	tracks:	13178
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1378	Efficiency:	0.742648	+ -	0.00372067	tracks:	13806
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1379	Efficiency:	0.744087	+ -	0.00364493	tracks:	14333
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1380	Efficiency:	0.748779	+ -	0.00364853	tracks:	14131
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1381	Efficiency:	0.747065	+ -	0.00365534	tracks:	14142
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1383	Efficiency:	0.74232	+ -	0.00621757	tracks:	4948
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1384	Efficiency:	0.732719	+ -	0.00548482	tracks:	6510
[E	fficiencyVsGeometry]:		Geometry:	5	run:	1385	Efficiency:	0.747001	+ -	0.0101513	tracks: 1	1834
[E	fficiencyVsGeometry]:	Summary	Geometry:	5			Efficiency:	0.727493	+ -	0.0158082	tracks: 1	156620
гг	fficiency//cfeemetry	٦.	-	-				-					

Mareike Weers, 6th BTTB Workshop

REINER Pixel Sensors: Results

U technische universität dortmund

Mareike Weers, 6th BTTB Workshop

REINER Pixel Sensors: Results

Irradiated (Protons $6 \times 10^{15} n_{eq}/cm^2$)

Irradiated (Neutrons $5 \times 10^{15} \text{ neq/cm}^2$)

400V

Tuning: 3200e, 6ToT@20ke

Efficiencies of different designs

- Fluences: **→**
 - R1: $5 \times 10^{15} n_{eq}/cm^2$ (Neutrons)
 - R2: 6×10^{15} n_{eq}/cm² (Protons)
- Sensor temperature: →
 - T(R2) < T(R1)
- Voltages: →
 - R1: 400V
 - R2: 800V

Tuning: 3200e, 6ToT@20ke

Conclusion & Outlook

- REINER Pixel Sensors:
 - Lab and testbeam measurements
 - Different results for proton and neutron irradiated assemblies
- Preparing ten modules to be irradiate to different fluences with protons and neutrons
- Further testbeam measurements
- Adapted new analysis tool for TBMon2: EfficiencyVsGeometry

REINER Pixel Sensors: Results

Efficiencies of different thresholds for sensor DO-R2 at 600V

19.01.2018

technische universität

dortmund