3D Material Budget Imaging

Track-based Multiple Scattering Tomography

Hendrik Jansen, Paul Schütze BTTB6, Zürich – 17.01.2018

2D Imaging

- Setup
- Image reconstruction concept

3D Imaging

- Simulation
- Measurement
- Performance

Multiple Scattering & 2D Material Budget Imaging

Multiple Scattering & Material Budget

- High-energy particles undergo multiple Coulomb scattering when traversing any material
 - ➔ Particle is deflected
- Scattering angle distribution: Gaussian-like center with tails at larger angles
- The width of the gaussian-like center is well predicted by the Highland formula [1]:

$$\theta_{x,y} = \frac{13.6 \,MeV}{\beta cp} \sqrt{\frac{x}{X_0}} \left(1 + 0.038 \ln\left(\frac{x}{X_0}\right)\right)$$

x: Path length in the material X_0 : Material's radiation length $\epsilon = x/X_0$: *Material budget*

- Measurement: Scattering angle distribution
- Characteristic quantity: Material budget

- Goal:
 - Position-resolved measurement of the material budget via the deflection angle
- Required:
 - Measurement of the scattering angle at the sample
 - Extrapolation of the track to the position of the sample
- Four steps:
 - Illuminate a sample with a charged particle beam
 - Measure the *hits* in the **pixel** sensor planes around it
 - Reconstruct the particles' trajectories through the telescope
 - Extract the width of the kink angle distribution

DESY II Test Beam Facility [2]

The Beam

- Free positron or electron beams created from bremsstrahlung
- Energy: 1 6 GeV
- Particle rate: < 50 kHz (energy dependent)
- Three beam lines available
- Two Beam Telescopes available
- This measurement (simulation):
 - TB 21 (AllPix Detector Simulation Framework)
 - 1.6 GeV positrons
 (5 GeV electrons)
 - DATURA Beam Telescope [3] (simulated response tuned accordingly)

[2]: http://testbeam.desy.de[3]: http://telescopes.desy.de

EUDET-type Beam Telescopes

The Detector

- 6 sensors: Mimosa 26
- 4 PMTs as coincidence trigger
- TDAQ system & infrastructure available
- Good track resolution ($\sigma > 1.86 \mu m$) due to ...
 - good intrinsic sensor resolution
 - low material budget
 - Reduce multiple scattering at the sensor planes

- Mimosa 26:
 - Pixel Pitch: 18.4 μm x 18.4 μm
 - Active area: 10.6 mm x 21.2 mm
 - Intrinsic sensor resolution: > 3.24 μm
 - Thickness:
 50 µm sensor + 50 µm capton foil

DESY. | 3D Material Budget Imaging | H. Jansen | 17.01.2018

AllPix Detector Simulation Framework [4]

Beam / Detector for Simulation

- Particle propagation and energy deposition from Geant4 [5]
- Includes multiple scattering in sensors and sample
- Simulates the detector response
- Setup adapted to the conditions at the DESY Test Beam Facility
- 180 data samples for rotation angles from 0° 179°

Track Reconstruction

The Track

- Triplet Method:
 - Matching hits in upstream (*downstream*) planes form **triplets**
 - Matching upstream and downstream triplets form **track** candidates
 - Kink angle at the sample:
 Difference of upstream and downstream slopes

Material Budget Estimators

The Width

- Needed:
 - The width of the kink angle distribution for each image cell
 - ➔ Calculate the MB via Highland formula
- Challenges:
 - Non-gaussian tails of the distribution
 - Low statistics
- Possible methods:
 - Calculate RMS
 - Calculate Median Absolute Deviation (MAD)
 - Calculate Average Absolute Deviation (AAD)
 - Fit Gaussian distribution
 - Fit Student's t-distribution (modeling of tails)
 - Many more ...

... for the full dataset or inner XX% quantiles

Material Budget Estimators

The Width

- Tested several methods on a 2D image of a simulated sample
- In regions of air, 3mm and 6mm of aluminum, compare the mean and the standard deviation of the different estimators
 - ➔ Gives a measure on the robustness of the estimator and therefore the image contrast

Material Budget Estimators

The Width

- Tested several methods on a 2D image of a simulated sample
- In regions of air, 3mm and 6mm of aluminum, compare the mean and the standard deviation of the different estimators
 - Gives a measure on the robustness of the estimator and therefore the image contrast

- ➔ Using quantiles is more robust due to the neglected tails
- ➔ Fitting is not always better
- ➔ AAD90 yields the highest contrast + matches prediction

Image Reconstruction

 Map the distributions' widths of each image cell to yield a projection of the material budget

Image Reconstruction

 Map the distributions' widths of each image cell to yield a projection of the material budget

Image Reconstruction

 Map the distributions' widths of each image cell to yield a projection of the material budget

Track-based Multiple Scattering Tomography

Simulation

- Goal:
 - Reveal the inner structure of a sample from only measuring its projections

- Goal:
 - Reveal the inner structure of a sample from only measuring its projections

- Goal:
 - Reveal the inner structure of a sample from only measuring its projections

- Goal:
 - Reveal the inner structure of a sample from only measuring its projections
- Method:
 - Repeat the projection measurement for different rotation angles
 - Perform an inverse radon transform [7] to reconstruct the internal material budget distribution

[7]: S.R. Deans, The Radon Transform and some of its applications

Image Reconstruction

• Mapping of the material budget for one rotation angle

Image Reconstruction

- Mapping of the material budget for one rotation angle
- Extract a slice perpendicular to the rotational axis

Image Reconstruction

- Mapping of the material budget for one rotation angle
- Extract a slice perpendicular to the rotational axis
- Slices from multiple rotational angles form the *sinogram*

Sinogram

Image Reconstruction

- Mapping of the material budget for one rotation angle
- Extract a slice perpendicular to the rotational axis
- Slices from multiple rotational angles form the *sinogram*
- Filtered back projection (inverse radon transform) yields the reconstructed density distribution

Reconstruction

Simulation Results

Simulation Results

Resolution & Contrast

Contrast-to-noise ratio:

$$C = \frac{|\mu_{alu} - \mu_{air}|}{\sqrt{\sigma_{alu}^2 + \sigma_{air}^2}}$$

- Mean μ and variance σ_i^2 of the signal in regions of air and aluminum (blue/red boxes)

- Resolution:
 - Fit modified error function with the Gaussian width σ to the sharp edges

$$f(x) = A \int_0^x e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Simulation Results

Resolution & Contrast

- There's a trade-off between
 resolution and contrast
 - Lowering the voxel size by a factor *x* reduces the number of tracks in each 2D cell by *x*²
 - Choice of voxel size depends on the application and the recorded number of tracks

Track-based Multiple Scattering Tomography

Measurement

Image Reconstruction

- Mapping of the material budget for one rotation angle
- Extract a slice perpendicular to the rotational axis
- Slices from multiple rotational angles form the *sinogram*
- Filtered back projection (inverse radon transform) yields the reconstructed density distribution

DESY. | 3D Material Budget Imaging | H. Jansen | 17.01.2018

Material Budget Imaging – 3D Results

• Reconstruction reveals several details of the sample

Material Budget Imaging – 3D Results

• Reconstruction reveals several details of the sample

Material Budget Imaging – 3D Results

- Reconstruction reveals several details of the sample
- Combine the reconstructions of all slices to yield the full 3D material budget distribution

- Reducing the voxel size is not always a good idea
 - Without contrast, the better resolution does not improve the reconstructed image

What about CT?

X-Rays vs. Electrons

- CT (Computed Tomography) is a well established method for 3D imaging, but ...
- for X-rays, the attenuation length is shorter than the radiation length of high-energy particles
 - E.g. Lead:
 - Attenuation length (photons): ~0.1 mm (50 keV) / ~0.7 mm (200 keV)
 - Radiation length (highly relativistic charged particles): 5.6 mm

What about CT?

X-Rays vs. Electrons

- CT (Computed Tomography) is a well established method for 3D imaging, but ...
- for X-rays, the attenuation length is shorter than the radiation length of high-energy particles
 - E.g. Lead:
 - Attenuation length (photons): ~0.1 mm (50 keV) / ~0.7 mm (200 keV)
 - Radiation length (highly relativistic charged particles): 5.6 mm
 - ➔ GeV-electrons can probe thicker materials than X-rays!
 - ➔ Simulation: Lead cube with the same geometry as shown before

What about CT?

X-Rays vs. Electrons

- CT (Computed Tomography) is a well established method for 3D imaging, but ...
- for X-rays, the attenuation length is shorter than the radiation length of high-energy particles
 - E.g. Lead:
 - Attenuation length (photons): ~0.1 mm (50 keV) / ~0.7 mm (200 keV)

Higher contrast

for **lead** sample!

- Radiation length (highly relativistic charged particles): 5.6 mm
- ➔ GeV-electrons can probe thicker materials than X-rays!
- ➔ Simulation: Lead cube with the same geometry as shown before

- Reconstruction of 3D material budget using multiple scattering distributions has been achieved from simulated and measured data
- Performance studies on simulated data:
 - Resolution: >28 μm
 - Theoretical limit @ DESY TB, Alu sample: ~5 μm
- Acceptance area: Limited to telescope sensor planes, 1 cm x 2 cm
- Measurement time: ~ 3 days
- Data for performance measurements is recorded evaluation pending

Outlook

Improvements

- The method can be improved by ...
 - higher particle rates / faster tracking devices
 → reduce measurement time
 - Upgrade of the DESY Test Beam is considered
 - Other facilities
 - improved reconstruction algorithms \rightarrow increase resolution and contrast
 - In contact with experts on CT and experts on reconstructions with low statistics data
 - larger sensor planes
 → measure larger objects
 - Calibration with targets of known material budget
 → reduce artefacts and yield absolute numbers
 - Using a more sophisticated tracking algorithm (GBL)

Backup

Restricted Area

Track Reconstruction

The Track

- Triplet Method:
 - Matching hits in upstream (*downstream*) planes form **triplets**
 - Matching upstream and downstream triplets form track candidates
 - Kink angle at the sample:
 Difference of upstream and downstream slopes
- Advanced: GBL for track fitting [6]
 - Optimizing the trajectory
 - Allows for scattering
 - Kink angle at the sample: Local, unbiased parameter in the track model

[6]: C. Kleinwort, General broken lines as advanced track fitting method