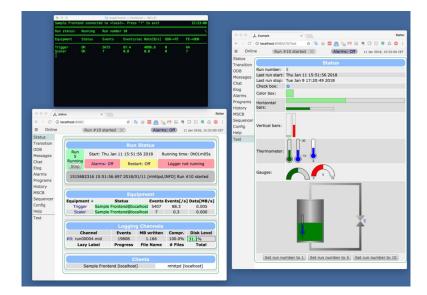

Overview and Organisation of the Hands-On Sessions

6 Tutorials at BTTB6 on Thursday afternoon

Tools for your test beam and you


The **MIDAS** data acquisition system for Test Beams by Stefan Ritt

Contents

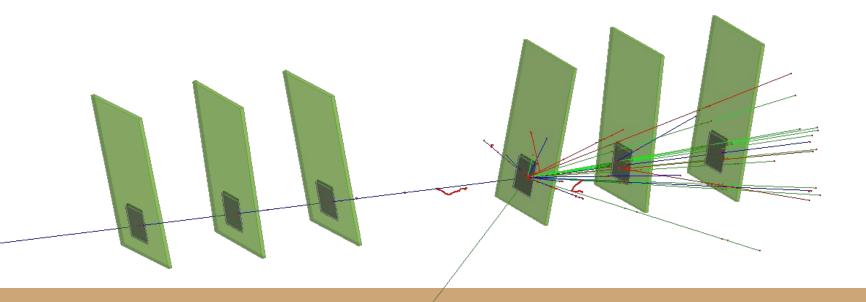
- short demonstration of **installation**
- basic overview of the components and concepts
- application to test beams
- event-based data acquisition and slow control
- data visualization and web-based user interface

Possible preparation

 MIDAS documentation: https://midas.triumf.ca/MidasWiki/inde x.php/Midas_documentation

Allpix² Simulation Framework by Simon Spannagel

Contents

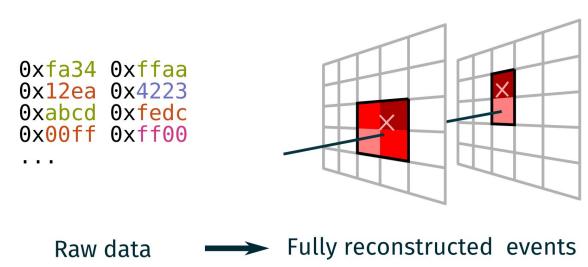

- introduction to the Allpix Squared simulation framework
- walk-through the examples
- set up your own telescope-plus-DUT simulation

Recommended Preparation

 Installation of the latest version (v1.1.0) on your computer or remote machine:

https://cern.ch/allpix-squared

• CVMFS version available


The **Proteus** Reconstruction Software by Moritz Klein

Contents

- analysis flow from raw hit data to reconstructed tracks
- basic efficiency measurements using an example dataset

Recommended preparation

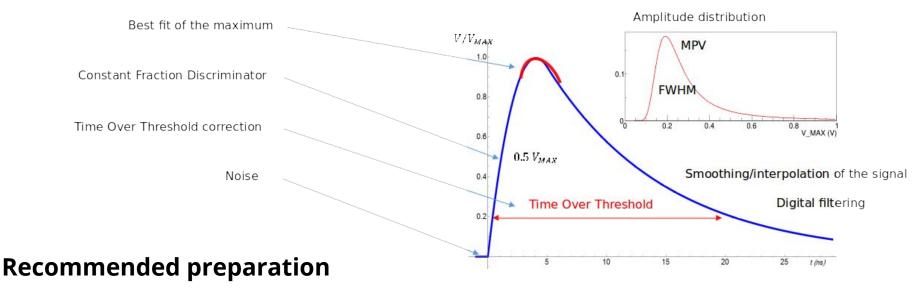
- Installation on local computer or on CERN lxplus machines
- Instructions: https://gitlab.cern.ch/unige-fei4tel/proteus
- Requirements ROOT and a C++11 compatible compiler

Scattering Images using **EUTelescope** by Michaela Queitsch-Maitland

Contents

- brief overview on EUTelescope
- analysis flow from raw hit data to a scattering image
- using a "noDUT" dataset

Recommended preparation


 Reference: http://eutelescope.web.cern.ch/

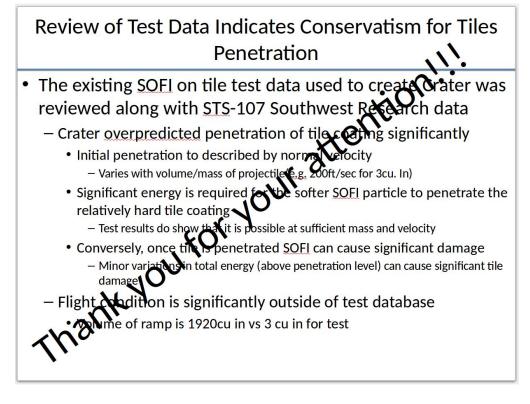
Timing: Measurement of time of arrival by Nicola Minafra (nicola@cern.ch)

Contents

- computing the arrival time using sampled signals
- comparison between different algorithms

- laptop, C++ knowledge
- (any) installation of ROOT

Making the most of your 10 minutes of fame **Presentations Skills** by David Barney


Contents

- identifying some simple but effective methods of improving presentations and posters
- hands-on activities to reinforce concepts

Recommended (mental) preparation

- your own laptops
- be prepared to share your work with fellow participants

a different example...

You can attend up to TWO tutorials

13:00	Hands-On: Scatterin EUTelescope	g Images using	Hands-On: Making the <i>l</i> most of your 10 minutes of fame	Dr. David BARNEY	Hands-On: The Proteus Reconstruction Softw	Dr. Moritz KIEHN
14:00						
	ETH HG E 33.3, Zuric	h, Switzerland	ETH HG E 33.1, Zurich, Switzerland		ETH HG E 33.5, Zurich, Switzerland	
	Coffee break					
15:00	<i>ETH HG E 1.2, Zurich, Switzerland</i> 14:45 - 15:15					
	Hands-On: Measurement of time of arrival	Mr. Nicola MINAFRA	Hands-On: The MIDAS data acquisition system for Test Beams	Stefan RITT 📄	Hands-On: The Allpix Simulation Framewor	Squared k
16:00						
	ETH HG E 33.5	15:15 - 17:00	ETH HG E 33.3	15:15 - 17:00	ETH HG E 33.1	15:15 - 17:00