

The UNIGE FE-I4b particle telescope

and one year of users data UniGE FE-14 telescope simulation with AllPix-squared

6th BTTB Workshop 2018 16-19 January, Zurich Mateus Vicente (UNIGE/CERN) on behalf of UNIGE telescope group and ATLAS ams CMOS collaborators

UNIGE FE-I4b Telescope

"Permanently" installed at CERN SPS

- Paper: M.Benoit et al., JINST11 (2016) no.7, P07003
- □ 6 telescope planes
 - FE-I4b + IBL planar pixel sensors (200µm n⁺-in-n)
 - 40MHz sampling, 4 bit ToT, trigger based
 - HitOr bus of the first and last telescope planes (AND or OR) triggering data read-out
 - Arbitrary mask to focus on DUT region
- DUT box with X and Y positioning, relative to the beam
 - Down to -20 degC on powered DUT (H35DEMO)
- HSIO II + RCE generation 3 DAQ system
 - DAQ system connected to a Linux server running the DAQ GUI, slow control, and online monitoring.

UNIGE FE-I4b Telescope

"Permanently" installed at CERN SPS

- Detector Control System Slow control and monitoring
 - Central LabView GUI for the DCS
 - Remote access to all devices/services
 - **Monitoring and logging** of HV, temperature, position, and etc...
- Easy patch panel for user data/HV/LV/etc connections
- Wiener MPOD crate (HV/LV power supply)
 - **LV** 8 channels 120 V_{max} 100 mA_{max}
 - **LV** 16 channels 8 V_{max} 10 A_{max}
 - **HV** 8 channels 1 kV_{max} 8 mA_{max}

Telescope features

What to expect?

- Average detection efficiency per plane of 99.4%
- 10^{10} Trigger rate (to be improved with new FELIX DAQ system) $\mu = 1.45 \ \mu m$ $\mu = 0.63 \,\mu m$ 10^{6} $\sigma = 12.35 \, \mu m$ $\sigma = 10.31 \, \mu m$ 18.3 kHz without DUT = 127.03 um = 32.88 um 10^{8} $f_{bkg} = 0.001$ $f_{bka} = 0.001$ 5.7 kHz with FE-I4 size DUT 105 Spatial resolution 10^{4} 106 $\sigma_x = 11.7 \ \mu m \text{ and } \sigma_y = 8.3 \ \mu m \text{ (calculated)}$ 10^{3} $\sigma_x = 12.35 \ \mu m$ and $\sigma_y = 10.31 \ \mu m$ (measured at DUT) -10^{4} 10² AllPix-squared simulation for verification (work-in-progress) -10^{2} Cluster size distribution Cluster ToT distribution 10^{1} 10^{0} 100 -200200 -200 200 0 0 Match residual u / µm Match residual v / µm

Telescope/DUT integration

and a few user examples

- Plug&Play for devices based on the FE-I4b
 - Read-out of up to 12 FE-I4b user devices
- Users DUTs with dedicated DAQ
 - Trigger/Busy scheme
 - SBM Trigger/Acknowledge handshake
 - Trigger timestamp and offline sync
- □ Example picture (at FERMILAB 2017)
 - 1. H35DEMO capacitively coupled to FEI4
 - 2. Monolithic H35DEMO (trigger/busy scheme)
 - 3. FE-14b planar assembly bump-bonded at ANL

The H35DEMO chip

HV-CMOS monolithic/hybrid prototype

- Pixel Sensor chip implemented in a 350 nm HV-CMOS process
 - Pixel pitch of **50x250 um** (matching FE-I4 ROC footprint)
 - Different pixels and readout types
- Monolithic **nMOS matrix**:
 - Digital pixels with in-pixel nMOS comparator
 - Two flavors: with and without Time Walk compensation
- **Analog matrices** (2 arrays to be **coupled** to a FE-I4B ROC):
 - Different flavors in terms of gain and speed
- Monolithic CMOS matrix:
 - Analog pixels with off-pixel CMOS comparator
 - One (two) comparators on the left (right) sub-matrix

Standalone

CMOS

matrix

log pixels

pixel CMOS

mvicente@cern.ch - 17/01/18

H35DEMO

H35DEMO Test-beam results

Monolithic CMOS pixel matrix

H35DEMO Test-beam results

Capacitively coupled analog pixel matrices

- Testbeam campaign at SPS
- 120 GeV protons beam

université de genève

Efficiency

- Samples with 3 different resistivities
 - + voltage and threshold scans
- □ **High efficiency** for all 3 pixel types in both analog matrices
 - Final results @ arXiv:1712.08338v1

ATLASPix Test-beam (preliminary) results

New monolithic, full size, demonstrator chip

- ams aH18 **180 nm** HV-CMOS process Buffered matrix:
- Parallel-pixel-to-buffer architecture
- **56** × 320 pixels, **60μm×50μm** pitch
- Unbuffered matrix:
 - Column-drain architecture
 - **25** × 400 pixels, **130μm** × **40μm** pitch

9

UNIVERSITÉ DE GENÈVE

TÉ DES SCIEN

Designed at KIT, IFAE, Geneva, Heidelberg, Liverpool

Felix DAQ system development

The Front-End Link eXchange interface system

- FELIX: Interface between the detector front-end and the readout system
 - PCIe based system developed for the Phase-I and HL-LHC upgrade
 - Three GBT links on FELIX back-end
 - 1x clock distribution
 - 2x data transmission
- Successfully integrated with CaRIBOu system
- Recorded every particle in the SPS beam (~400 kHz trigger rate)

mvicente@cern.ch - 17/01/18

10

The Thin-TOF PET scanner

The TT-PET project

UNIVERSITÉ DE GENÈVE FACUTÉ DES SCIENCES

11

- A **compact** and **thin Time Of Flight PET** detector for small animals with Depth-Of-Interaction measurement capability
- Total thickness of 2 cm
- 3D photon-detection granularity of 1.0 x 1.0 x 0.2 mm³
- TT-PET monolithic sensor
 - Stand-alone readout
 - **□** Full depletion of **100µm** sensor thickness for substrate resistivity \geq 500 Ωcm
 - Time resolutions of ~100ps (MIPs)

mvicente@cern.ch - 12/09/17

Summary and conclusions

- UNIGE FE-I4 particle telescope
 - Installed most of the time at SPS
 - Going for a second period at the Fermilab Testbeam Facility
 - Services for the DUT HV/LV, temperature, position, etc...
 - All accessible remotely with a LabVIEW GUI for control and monitoring
 - Scriptable scans, such as high voltage
 - Practically no need for an in-situ shift
 - ~5 kHz trigger rate with ~11µm spatial resolution
 - Multiple ways for telescope/DUT integration
- User results
 - H35DEMO monolithic and capacitively coupled results shows uniform efficiency over the pixel matrix over 99.5%
 - New ATLAXPix already shows good efficiency, although further investigation is still needed (testbeam campaign at Fermilab starting at end of January
 - The Felix system was integrated to readout the telescope planes and DUT (via CaRIBOu) and measure all particles on the SPS beam
 - TT-PET project successfully used the telescope tracks reconstruction to map the detection efficiency on their detector, showing high and uniform efficiency.
 - The telescope is always being improved with the feedback from the users

