

A Triggerless Readout System for Mimosa26 based Telescopes and A Python based test-beam analysis software

<u>Y. Dieter</u>, C. Bespin, T. Hemperek, T. Hirono, F. Hügging, J. Janssen, H. Krüger, D.-L. Pohl, N. Wermes, P. Wolf and J. Dingfelder

Physikalisches Institut der Universität Bonn

- Part I: Trigger-less readout system for Mimosa26 based telescopes
 - Motivation
 - Original triggered readout
 - New trigger-less readout with pymosa
 - Track reconstruction
- Part II: Python based test-beam analysis software
 - Basic structure
 - Analysis flow overview
 - Performance results

6th Beam Telescopes and Test Beams Workshop 2018

Part I A Trigger-less Readout System for Mimosa26 based Telescopes

6th Beam Telescopes and Test Beams Workshop 2018

- Beam time is expensive and rare
- Need high statistics
 - \rightarrow High event rate
- → Fast readout
- No endless space for all hardware components
- As few components as possible
- \rightarrow Compact and easy to use setup

- Goals:
 - \rightarrow Mimosa26 telescope: high track resolution
 - \rightarrow ATLAS FE-I4: high time resolution
 - \rightarrow Use of existing hardware from EUDET/AIDA

6th Beam Telescopes and Test Beams Workshop 2018

A Nice Eudet Mimosa Bonn Telescope

ANEMONE: A Nice Eudet Mimosa bONn tElescope

beam axis / z-axis

universität**bonn**

- 6 Mimosa26 planes: high resolution tracking
- ATLAS FE-I4 plane: high time resolution reference plane
- 2 scintillators for triggering FE-I4 (using TLU)
- New readout system for Mimosa26 sensors (pymosa + readout board)

[P. Wolf, Testing and extending a Python-based readout system for a highresolution pixel detector telescope]

universitätbonn Original triggered readout of M26

- Trigger: Rolling shutter readout of Mimosa26 sensors
- One frame: 115 µs
- Merge data of frame n and n + 1
- Limited rate: 1 trigger / 2 frames
 - \rightarrow Does not allow to operate on high rate (~ 4.3 kHz)

universitätbonn New trigger-less readout of M26

- Continuous rolling shutter readout of Mimosa26 sensors (record all data)
- Obtain distinct time information by using time reference plane (e.g. FE-I4)
 - \rightarrow Correlate Mimosa26 data to FE-I4 data (time reference)
 - \rightarrow Allows to operate at high event rates

6th Beam Telescopes and Test Beams Workshop 2018

- Pymosa + MMC3 (https://github.com/SiLab-Bonn/pymosa):
 - Python based readout system for M26 based telescopes
 → Triggerless and continuous readout of up to 6 M26 planes
 - Supports configuration of M26 sensors
 - Based on single FPGA-readout board (MMC3)
- \rightarrow Compact setup
- \rightarrow Operation at high particle rates is possible (20 kHz)

6th Beam Telescopes and Test Beams Workshop 2018

universität**bonn** TLU – Trigger Logic Unit

- TLU: EUDET JRA1 Trigger Logic Unit (TLU v0.2c)
 - 4 Trigger inputs via LEMO
 - PMT powering possible
 - 6 DUT interfaces (RJ45)

Event Rate, Step Size of Time Stamps (40 MHz): 0.05 s

Rate measurements with TLU

Developed new DAQ software and TLU firmware

- Easy to use software (stand-alone)
 → See pytlu: https://github.com/SiLab-Bonn/pytlu
- Continuous data storage of triggers in output file
 - \rightarrow Timestamp (64 bit)
 - \rightarrow Trigger number (32 bit)
 - \rightarrow Rel. distance of input trigger signals and generation of trigger
- Protocol (Trigger mode) is compatible with original firmware

SI LAB Silizium Labor Bon

6th Beam Telescopes and Test Beams Workshop 2018 Yannick Dieter (dieter@physik.uni-bonn.de)

Track Reconstruction of ANEMONE universität**bonn**

- Challenge: correct matching of Mimosa26 tracks with FE-I4 (time reference) \rightarrow Track reconstruction
- Track reconstruction efficiency: Percentage of correctly assigned FE-I4 hits to Mimosa26 tracks → Need high (~ 99 %) efficiency in order to keep high statistics → Defines systematic error on all track based analyses

Track Reconstruction of ANEMONE universität**bonn**

- Challenge: correct matching of Mimosa26 tracks with FE-I4 (time reference) \rightarrow Track reconstruction
- Track reconstruction efficiency: Percentage of correctly assigned FE-I4 hits to Mimosa26 tracks → Need high (~ 99 %) efficiency in order to keep high statistics → Defines systematic error on all track based analyses

Max rate limited by buffer size of readout system (2 Mb)

Matching of FE-I4 hits with Mimosa26 tracks works reliably and gives high efficiency

6th Beam Telescopes and Test Beams Workshop 2018

Part II A Python based test-beam analysis software

6th Beam Telescopes and Test Beams Workshop 2018

universitätbonn Test Beam Analysis Software

- Goal: Simple to use test beam analysis software
- Software written in Python

• State-of-the-art scientific modules (scipy, numpy, numba, ...)

- Multiprocessing on all cores
- All steps of test beam analysis implemented
 → Each step has own function
- Results of each step are summarized in output file and plots
- Code is documented, examples are available
- Graphical User Interface for Test Beam Analysis
- Simulation of data is possible

6th Beam Telescopes and Test Beams Workshop 2018

Yannick Dieter (dieter@physik.uni-bonn.de)

https://github.com/SiLab-Bonn/testbeam_analysis

Test Beam Analysis Flow

universität**bonn**

Data type for hit table: event number, frame number, charge, column, row

- Noisy pixel removal:
 - Check for noisy pixels and remove them
- Clustering:
 - Cluster hits for given row/column cluster distance
- Correlation:
 - Correlate clusters of reference DUT with all other DUTs on event number basis
- Pre-Alignment:
 - Correct displacement in x and y between DUTs (reference DUT is origin of coord. System)
- (Fine) Alignment:
 - Correct translations and rotations (in all dimensions) between DUTs
- Track finding:
 - Search for matching cluster in subsequent DUTs
- Track fitting:
 - \rightarrow Kalman Filter \rightarrow Straight line fit
- Result Analysis:
 - Residual calculation
 - Efficiency calculation
 - …

universitätbonn Performance of Test Beam Analysis

Results based on 2.5 GeV at ELSA (new external beam line for detector tests) → More information about beam line: Talk of D. Proft

• Alignment example:

• Unbiased residual width vs z-position (@ M26 threshold of 7, 20 mm spacing)

 \rightarrow 4 µm residual width for innermost telescope planes

Performance - Residuals universität**bonn**

universitätbonn Performance - Resolution

Comparison of intrinsic resolution using iterative pull method

• Obtained values for intrinsic resolution reproduce results from EuTel analysis:

$$\rightarrow$$
 EuTel: $\sigma_{\text{int}}^{\text{M26}} = 3.4 \,\mu\text{m} @ \xi = 6$ T

FBA: $\sigma_{
m int}^{
m M26}=3.5\,\mu{
m m}~@~\xi=6$

Pointing resolution: comparison not possible since different methods used

 $\rightarrow \text{EuTel:} \ \sigma_{\text{point}}^{\text{M26}} = 1.8 \ \mu\text{m}(1.5 \ \mu\text{m}) \ @ \ \xi = 6 \qquad \text{TBA:} \ \sigma_{\text{point}}^{\text{M26}} = 2.5 \ \mu\text{m}(2.0 \ \mu\text{m}) \ @ \ \xi = 6$

- New readout system for M26 based telescopes was developed
 - \rightarrow Based on single FPGA readout board
- Features continuous and trigger-less data taking of M26 sensors
- Time information: correlating M26 data to time reference plane (e.g. ATLAS FE-I4)

 \rightarrow Fast readout: particle rates up to 20 kHz (in future: increase buffer size to 2 Gb) \rightarrow Compact and easy to use setup

- Simple to use test beam analysis software was developed
- GUI is available
- To do: extend documentation and examples
- Performance comparable to commonly used analysis software (EuTel)
- Achievable pointing resolution: ~3.5 μm @ 2.5 GeV (ELSA)

THANK YOU!

6th Beam Telescopes and Test Beams Workshop 2018

universitätbonn New External Beam Line at ELSA

• Large experimental area (~ 30 m²)

6th Beam Telescopes and Test Beams Workshop 2018

SI LAB Silizium Labor Bont

Track Reconstruction of ANEMONE

- Challenge: correct matching of Mimosa26 tracks with FE-I4 (time reference) \rightarrow Track reconstruction
- Track reconstruction efficiency: Percentage of correctly assigned FE-I4 hits to Mimosa26 tracks → Need high (~ 99 %) efficiency in order to keep high statistics

 - \rightarrow Defines systematic error on all track based analyses
- Complete telescope track:

universität**bonn**

- Hit in all M26 planes
- Distinct hit in FE-I4 (time reference)
- Minimum track and hit distance (FE-I4): Ensure correct and distinct time reference matching

6th Beam Telescopes and Test Beams Workshop 2018

Yannick Dieter (dieter@physik.uni-bonn.de)

20

Track reconstruction Efficiency: Percentage of correctly assigned FE-I4 hits to M26 tracks

- Use residuals of FE-I4 plane
- Estimate track reconstruction efficiency from amount of wrongly reconstructed tracks
- Assumption: wrongly reconstructed tracks have large residual in FE-I4 (track not correlated to hit)
- Approach:

universität**bonn**

- Take FE-I4 row residuals
- Cut row residuals:

 $\Gamma^{\rm row}_{\pm} = \mu_s \pm (\frac{{\rm FWHM}}{2} + \sigma_s), \, {\rm FWHM} = 2\sqrt{2\ln(2)}\sigma_s$ 10³

- Cut column residuals with row cut → row cut column residuals
- Cut row cut column residuals:

$$\Gamma_{\pm}^{\text{column}} = \mu_{\text{box}} \pm (d_{\text{box}} + \sigma_{\text{box}})$$

 \rightarrow row and column cut residuals

Track reconstruction Efficiency: Percentage of correctly assigned FE-I4 hits to M26 tracks

- Use residuals of FE-I4 plane
- Estimate track reconstruction efficiency from amount of wrongly reconstructed tracks
- Assumption: wrongly reconstructed tracks have large residual in FE-I4 (track not correlated to hit)
- Approach:

universität**bonn**

- Take FE-I4 row residuals
- Cut row residuals:

 $\Gamma_{\pm}^{\text{row}} = \mu_s \pm (\frac{\text{FWHM}}{2} + \sigma_s), \text{ FWHM} = 2\sqrt{2\ln(2)}\sigma_s$ 10³

- Cut column residuals with row cut → row cut column residuals
- Cut row cut column residuals:

$$\Gamma_{\pm}^{\rm column} = \mu_{\rm box} \pm (d_{\rm box} + \sigma_{\rm box})$$

 \rightarrow row and column cut residuals

Track reconstruction Efficiency: Percentage of correctly assigned FE-I4 hits to M26 tracks

- Use residuals of FE-I4 plane
- Estimate track reconstruction efficiency from amount of wrongly reconstructed tracks
- Assumption: wrongly reconstructed tracks have large residual in FE-I4 (track not correlated to hit)
- Approach:

universität**bonn**

- Take FE-I4 row residuals
- Cut row residuals:

$$\Gamma_{\pm}^{\rm row} = \mu_s \pm (\frac{\rm FWHM}{2} + \sigma_s), \, {\rm FWHM} = 2\sqrt{2\ln(2)}\sigma_s$$

- Cut column residuals with row cut → row cut column residuals
- Cut row cut column residuals:

$$\Gamma_{\pm}^{\rm column} = \mu_{\rm box} \pm (d_{\rm box} + \sigma_{\rm box})$$

 \rightarrow row and column cut residuals

Track reconstruction Efficiency: Percentage of correctly assigned FE-I4 hits to M26 tracks

- Use residuals of FE-I4 plane
- Estimate track reconstruction efficiency from amount of wrongly reconstructed tracks
- Assumption: wrongly reconstructed tracks have large residual in FE-I4 (track not correlated to hit)
- Approach:

universität**bonn**

- Take FE-I4 row residuals
- Cut row residuals:

$$\Gamma_{\pm}^{\text{row}} = \mu_s \pm (\frac{\text{FWHM}}{2} + \sigma_s), \text{FWHM} = 2\sqrt{2\ln(2)}\sigma_s$$

- Cut column residuals with row cut → row cut column residuals
- Cut row cut column residuals:

$$\Gamma_{\pm}^{\rm column} = \mu_{\rm box} \pm (d_{\rm box} + \sigma_{\rm box})$$

 \rightarrow row and column cut residuals

 $\epsilon_{\rm reco} = \frac{{\rm signal} - {\rm background}}{{\rm signal}}$

Correctly reconstructed tracks in FE-I4

6th Beam Telescopes and Test Beams Workshop 2018

- Cuts (Tracks):
 - Hit requirement: hits in all M26 planes + FE-I4 (~ 40 %)
 - Min track/hit distance (~ 10 %)
 - Track quality (distance between hit and track intersection): 2σ of correlation (~ 5 %)