

Test of thin Ultra-Fast Silicon Detectors (UFSD) for monitoring of high flux charged particle beams

V.Monaco (Università di Torino and INFN, Italy)

Z.Amadi, R.Arcidiacono, A.Attili, N.Cartiglia, M.Donetti, F.Fausti, M.Ferrero, S.Giordanengo, O. Hammad Ali, M.Mandurrino, L.Manganaro, G.Mazza, R.Sacchi, V.Sola, A Staiano, A Vignati, R. Cirio

Charged Particle Therapy

Active Spot Scanning: beam monitoring

INFN

Beam monitoring in charged particle therapy

Parallel-plate ionization chambers

PROS:

• Robust, stable, radiation resistance

CONS;

- Slow response time
- Limited sensitivity
- Measurement of number of particles from the produced charge depends on energy
- Daily QA and calibration measurements.

Silicon detectors

PROS:

- Good sensitivity (single particle detection)
- Small signal duration (direct count of number of particles)
- Fine segmentation -> beam profile
- Time resolution (measurement of beam energy with time-of-flight techniques)

CONS:

- Pile-up effects at high frequencies
- Radiation resistance.

Ultra-Fast Silicon Detectors (UFSD)

✓ controlled low gain (based on LGAD, Low-Gain Avalanche Detectors)

✓ Enhanced signal -> smaller thickness -> smaller signal durations;

✓ excellent time resolutions;

H.F.-W. Sadrozinski et al. Ultra-fast silicon detectors (UFSD) Nucl. Instrum. Meth. A831 (2016) 18-23.

V. Sola et al. Ultra-Fast Silicon Detectors for 4D tracking. Journal of Instrumentation (2017), Volume 12.

Aim of the project ...

AOVE IT INFN

Development of two UFSD prototype devices:

- to directly count individual protons at high rates and (thanks to the segmentation in strips) and to measure the beam profiles in two orthogonal directions;
- to measure the beam energy with time-of-flight techniques, using a telescope of two UFSD sensors

Prototypes will be developed for radiobiological applications and used in the three italian therapy facilities

 $FOV = 3x3 cm^2;$

Flux > 10⁸ p/s cm² (error < 1%)

Beam tests of UFSD sensors (CNAO 2017) (INFN

Beam particle

Beam tests of UFSD pads (CNAO 2017)

2 detectors of 50 μm:
1. CNM 1,2 x 1,2 mm²;
2. Hamamatsu Ø1 mm.

- ✓ CNAO (Pavia);
- ✓ 32 runs;
- ✓ ~ 2*10¹⁰ p each run
 - (FWHM 1 cm);
- ✓ 20 spills/run (1 sec/spill)
- ✓ protons (62-227 MeV);
- ✓ Different beam intensities (20-100 % of max flux).

Signal shape (digitizer)

Threshold scan

Control of Signal to Noise Ratio

Test of UFSD detectors for beam monitoring

INFN

Landau distributions

Proton energy 143 MeV

Bethe-Bloch curve's trend

Radiation damage

20% signal loss after ~ 10¹² protons/cm²

Pile-up and saturation effects

Fit to a paralyzable pile-up model, usign the PTW ionization chamber to estimate the real particle rate.

Beam structure

The distribution of time difference between neighbouring peaks is compatible with a Poissonian distribution but with a pulse frequency one order of magnitude higher than the mean frequency measured with counts.

Beam structure

Mitigation techniques of saturation effects due to pile-up under investigation !!

Timing

CFD algorithm applied on signals waveforms collected with digitizer

Time resolution of single crossing

$$\sigma(t) = 35 \text{ ps } !!$$

Timing requirements for energy measurement

Error on time difference corresponding to a <u>range uncertainty < 1 mm in water.</u>

To reach such an error on the mean time difference a large number of measurements Is needed !!

Timing measurements with different algorithms

LE - leading edge (fix threshold)

CC - Maximization of cross-correlation function of two digitizer waveforms

CFD

140	0 digitize	ers	snap	shots
(T acquisition	=	300	μs)

E = 114 MeV

Algorithm	Mean ∆t	Δt resolution
LE	- (24 ± 3) ps	170 ps
СС	- (30 ± 2) ps	62 ps (snapshot)
CFD	- (34 ± 2) ps	64 ps

Simulation of UFSD beam telescope

GEANT4 simulation of material effects (energy loss and multiple scattering) **WEIGHTFIELD2** simulation of the UFSD response.

Error on mean Δt vs distance

Production of UFSD strip sensors

✓ Varying the thermal cycle for activation.

UFSD strip sensors

2 sensors, one with gain and the neighbour without. Amplifier Pilsen Board (CMS CT-PPS) Sensor shifted to allow laser scan along the strip edge

> $\lambda = 1060 \text{ nm}$ Spot size = 20 μ m

Laser beam

Short Strips of Wafer 8 (Boron)

Fast readout electronics

Proton beam energy range: $60 \div 250 \text{ MeV} (6-2 \text{ MIPs})$ Front-End Input charge range: $3 \text{ fC} \div 140 \text{ fC}$ Fluxes measurements: up to $10^8 \text{ p cm}^{-2} \text{ s}^{-1}$ Pile-up probability kept < 1 %.

Readout electronics

Design based CSA with capacitive feedback and fast reset of the input capacitance

Design based on TIA with differential architecture.

TIA architecture

ASIC design ready for both the architectures (24 channels/chip) sLVS output and readout in external FPGA. Submission for chip production this week.

UFSD in charge particle therapy could open new perspectives:

Directly count the number of particles \rightarrow exploiting the large UFSD S/N ratio and fast collection time in small thicknesses;

Measure the energy of the beam \rightarrow exploiting the outstanding time resolution.