

Test of thin Ultra-Fast Silicon Detectors (UFSD) for monitoring of high flux charged particle beams Test of thin Ultra-Fast Silicon

S.Giordanengo, C. Hammad Ali, M.Cartiglia, M.Donetti, F.Fausti, M.Ferrero,

S.Giordanengo, O. Hammad Ali, M.Mandurrino, L.Manganaro, G.Mazza,

R.Sacchi, V.Sola, A Staiano, A Vignati, R. Cir

V.Monaco (Università di Torino and INFN, Italy)

Z.Amadi, R.Arcidiacono, A.Attili, N.Cartiglia, M.Donetti, F.Fausti, M.Ferrero, R.Sacchi, V.Sola, A Staiano, A Vignati, R. Cirio

Beam monitoring in charged particle therapy
 Parallel-plate ionization chambers Silicon detectors Parallel-plate ionization chambers

Parallel-plate ionization chambers

Parallel-plate ionization chambers

Parallel - plate ionization chambers

Parallel - plate ionization chambers

Parallel - plate ionization chambers

PROS:

CONS;

-
- Limited sensitivity
- **PROS:**

 Robust, stable, radiation resistance

 Good sensitivity

 Sinall signal dure in the produced charge depends on energy

 Limited sensitivity

 Measurement of number of particles from

 Limited sensitivity

•
-

PROS:

-
-
-
- **PROS:**

 Good sensitivity (single particle detection)

 Small signal duration (direct count of

 nime regmentation -> beam profile

 Time resolution (measurement of beam

energy with time-of-flight techniques)
 CONS: PROS:

• Good sensitivity (single particle detection)

• Small signal duration (direct count of

• number of particles)

• Fine segmentation -> beam profile

• Time resolution (measurement of beam

energy with time-of-fl

CONS:

-
-

 \checkmark excellent time resolutions;

(UFSD) Nucl. Instrum. Meth. A831 (2016) 18-23.

V. Sola et al. Ultra-Fast Silicon Detectors for 4D tracking. Journal of Instrumentation (2017), Volume 12.

Aim of the project ... \longrightarrow \mathcal{A}_{ρ}
Development of two UFSD prototype devices:

Development of two UFSD prototype devices:

- \vee to directly count individual protons at high rates and (thanks to the segmentation in strips) and to measure the beam profiles in two orthogonal directions; evelopment of two UFSD prototype devices:

victoring to directly count individual protons at high rates and (the segmentation in strips) and to measure the beam profil

orthogonal directions;

victoring the developed for
 For the directly count individual protons at high rates and
segmentation in strips) and to measure the beam protorthogonal directions;
to measure the beam energy with time-of-flight technical
telescope of two UFSD sensors to directly count individual protons at high rates and
segmentation in strips) and to measure the beam pro
orthogonal directions;
to measure the beam energy with time-of-flight techn
telescope of two UFSD sensors
Prototyp
	- $\sqrt{ }$ to measure the beam energy with time-of-flight techniques, using a telescope of two UFSD sensors

to measure the beam energy with time-
telescope of two UFSD sensors
totypes will be developed for
obiological applications and used
ne three italian therapy facilities
FOV = 3x3 cm²;
Flux > 10⁸ p/s cm² (error < 1%)

 $FOV = 3x3$ cm²; ;

Beam tests of UFSD sensors (CNAO 2017) *CINFN*

Beam tests of UFSD pads (CNAO 2017) CINFN
2 detectors of 50 µm:
1. CNM 1,2 x 1,2 mm²;
2. Hamamatsu Ø 1 mm.
2. Hamamatsu Ø 1 mm.
2. Samamatsu Ø 1 mm. Beam tests of UFSD pads (CNAO 2017)

2 detectors of 50 µm: 1. CNM 1,2 x 1,2 mm2

-
- $\sqrt{32}$ runs:
- **VAO 2017)** CINFN

V CNAO (Pavia);

V 32 runs;

V ~ 2*10¹⁰ p each run

(FWHM 1 cm);
	- (FWHM 1 cm);
- \checkmark CNAO (Pavia);
 \checkmark 32 runs;
 \checkmark ~ 2*10¹⁰ p each run

(FWHM 1 cm);
 \checkmark 20 spills/run (1 sec/spill)
 \checkmark protons (62-227 MeV);
- \checkmark protons (62-227 MeV);
- v \sim 2*10¹⁰ p each run

(FWHM 1 cm);

v 20 spills/run (1 sec/spill)

v protons (62-227 MeV);

v Different beam intensities

(20-100 % of max flux). ~ 2*10¹⁰ p each run
(FWHM 1 cm);
20 spills/run (1 sec/spill)
protons (62-227 MeV);
Different beam intensities
(20-100 % of max flux).

Landau distributions

Bethe-Bloch curve's trend

20% signal loss after \sim 10¹² protons/cm²

Pile-up and saturation effects
Fit to a paralyzable pile-up model, usign the PTW ionization chamber to ex
the real particle rate Fit to a paralyzable pile-up model, usign the PTW ionization chamber to estimate
The real particle rate.
And the real particle rate.

Timing

CFD algorithm applied on signals
waveforms collected with digitizer WEN CREASE CREASE CREASE CREASE CREASE CREASE WAVE

Time resolution of single crossing

Time resolution of single crossing **CFD algorithm applied on signals**
waveforms collected with digitizer
Time resolution of single crossing
 $\sigma(t) = 35 \text{ ps}$!! orithm applied on signals
ms collected with digitizer
olution of single crossing
 $\sigma(t) = 35$ ps !!

$$
\sigma(t) = 35 \text{ ps } \mathcal{V}
$$

Timing requirements for energy measurement
Error on time difference corresponding to a **range uncertainty < 1 mm in water.**

Timing measurements with different algorithms
LE - leading edge CC - Maximization of cross-correlation
(fix threshold) function of two digitizer waveforms CFD

Simulation of UFSD beam telescope

GEANT4 simulation of material effects (energy loss and multiple scattering)

WEIGUTELER cimulation of the UESD remones **Mulation of UFSD beam telescope**
GEANT4 simulation of material effects (energy loss and multiple scattering)
WEIGHTFIELD2 simulation of the UFSD response. **Mulation of UFSD beam telescope**

GEANT4 simulation of material effects (energy loss and multiple sc:

WEIGHTFIELD2 simulation of the UFSD response.

Error on mean At vs distand

Production of UFSD strip sensors

UFSD strip sensors

**JFSD strip sensors

2 sensors, one with gain and the neighbour without.**

Amplifier Pilsen Board (CMS CT-PPS)

Sensor shifted to allow laser scan along the strip edge Amplifier Pilsen Board (CMS CT-PPS) Sensor shifted to allow laser scan along the strip edge **D Sensors**

ith gain and the neighbour without.

Board (CMS CT-PPS)

b allow laser scan along the strip edge
 $\lambda = 1060$ nm

Spot size = 20 µm **SPONSORERED SPOTS**

Spot size = 20 μm

Spot size = 20 μm

Laser beam

Short Strips of Wafer 8 (Boron)

-1

Readout electronics
Design based CSA with capacitive
feedback and fast reset of the input Design based CSA with capacitive feedback and fast reset of the input capacitance

Design based on TIA with differential architecture.

TIA architecture

UFSD in charge particle therapy could open new perspectives:

Directly count the number of particles \rightarrow exploiting the large UFSD S/N ratio and fast collection time in small thicknesses;

Measure the energy of the beam \rightarrow exploiting the outstanding time resolution.