

Progress of the AIDA-2020 Trigger Logic Unit (TLU)

- During beam-test frequently want to:
 - synchronize a detector under test (DUT) with external signals
 - E.g. scintillators to trigger on beam particles
 - Cherenkov detectors (for PID)
 - Accelerator (e.g. Spill signals, max-energy)
 - Synchronize with other detectors
 - E.g. With beam-telescope

- Originally designed for use with beam-telescope with low beam rate
- Handshake designed to allow independent clocks
 - (Optional) transfer trigger number from TLU → DUT

- Originally ILC users. Designed round "rolling shutter" MAPS pixel sensors (Mimosa family).
 - Trigger rate of EUDET system limited by frame readout to ~ 5kHz
 - → increasing use of beam telescopes by LHC detectors. Want higher trigger rate
 - No common clock → Difficult to interface to selftriggering detectors
 - E.g. some calorimeters.
 - FPGA inside EUDET TLU becoming obsolete.
- →New TLU designed as part of AIDA-2020 project
 - Open hardware, Open firmware (<u>https://www.ohwr.org/projects/fmc-mtlu</u>)

- Uses CoTS FPGA module with FMC (standard) interface
 - Xilinx Artix
- Synchronous interface
 - Clock , trigger , busy , sync
- ... but can be backward compatible with EUDET TLU

Synchronous Interface

INPUT PULSE

- Four Device Under Test (DUT) Interfaces
 - Five LVDS signals on HDMI connectors
 - (chosen to be compatible with CALICE)
 - Converted by passive "dongle" to RJ45 interface used by EUDET TLU
- Six trigger inputs
 - +/- 5V range
 - Adjustable threshold +/- 1.3V
 - Fully configurable trigger "mask"
- Clock input or output
 - Adjustable frequency, typically 40MHz
 - Clock input on either LVDS on 2-pole "Lemo" or HDMI

TLU hardware status

- 10 boards produced
- One in CERN, One in DESY (for tests)
 - No indicator LEDS. New board produced with LEDs.
 - LED boards arrived, Testing under way.
- Two TLUs will be delivered to DESY, one to CERN an AIDA-2020 "deliverable"
- Available to other groups at Euro 2.2k each.
 - New batch being produced this month let me know if you want one
- Completed porting of firmware from old to new hardware
 - Maintain all functionality from old TLU
 - Tested new functionality (clock generator, discriminators, trigger)
 - Still need to implement CDR functionality

TLU integration with EUDAQ2

at address 0x8 as 0x2f replied but is not on TLU address list. A mistery Config: /users/phpgb/eudag2/conf/newTLU.com Load Start Loa: SeoID: Terminate Status Run Numi Events Bi Triagers File Bytes Particles ock configuration file LU Status /phpqb/workspace/myFirmware/AIDA/bitFiles/TLU CLK Config.txt Connections type OK tcp://127.0.0.1:432

Integrated with <u>EUDAQ2</u>:

- Current version of TLU producer stable and working with EUDAQ2
- Allows to configure the TLU and read data
- Tested at CERN and DESY
- Aiming for up to 1MHz average trigger rate
- Testing/debugging ongoing

- DESY, October 2017
 - Interfaced AIDA-2020 TLU with Mimosa telescope
 - Used EUDET (trigger/busy/triggernumber) hand-shake
 - Successfully took data with telescope
 - Demonstrated backwards compatibility with EUDET TLU

Tests

- CERN, PS (East Area) T9, November 2017
 - Interfaced AIDA-2020 TLU with
 - Mimosa telescope (EUDET handshake)
 - FE-I4 fast pixel plane (EUDET handshake)
 - Thanks to Andre Rumler
 - "TORCH" project (AIDA / Synchronous handshake)
 - AIDA/Synchronous handshake
 - Successfully took data with telescope, FE-I4 and TORCH
 - TLUProducer took data
 - Records time-stamp of each trigger issued (25ns)
 - Records fine-grained time-stamp of each trigger input
 - Records which inputs fired (trigger mask may not demand all inputs fire)
 - Some inputs connected to Cherenkov detectors.

AIDA²⁰²⁰ TLU Tests CERN East Area T9

AIDA Beam Telescope + TORCH

- TORCH project doing R&D on particle PID by ToF
 - Cherenov light in thin quartz sheet perpendicular to beam
 - Guided by TIR to edges.
 - Read out by pixelated Micro-Channel Plate based PMTs

AIDA²⁰²⁰ Difference between timestamps

- Mimosa telescope sets busy until two frames read out (minimum time 115 $\mu s,$ max 230 $\mu s)$

Difference in trigger timestamps

- Telescope scintillators in coincidence with downstream timing detector
- Low trigger-rate
 - Most frames contain a particle, few point to timing detector

Difference in trigger timestamps

- TLU time-stamps triggers with 780ps bins
- Take difference between pulses from two trigger scintillators
 - Telescope scintillators, CERN East Area T9
- Precision of single scintillator = 1.5ns

AIDA²⁰²⁰ Extrapolated Tracks

- Reconstruct data from Mimosa telescope with <u>EUTelescope</u>
- Select events with only one track
 - Average of ~ 1.5 tracks per event
- Extrapolate from telescope to position of timing detector
- See outline of timing detector
- See talk on East Area

- Cone of Cherenkov photons trapped by TIR, guided to end of quartz sheet and focused on to MCP-PMT
- Projection of cone folded by reflection at edges

- Aiming to measure single photons with a precision of σ ~ 70ps
 - →Need to know impact point of particle to O(mm)
- For some analysis want to know particle type (p/π)
 - Time of flight measured by small dedicated detectors
 - Threshold Cherenkov detectors in beam
 - Get signal for π , but not for protons
 - Fed into TLU. Tag event by event
 - Compare ToF with/without Chernkov tag:

Blue – light in Cherenkov Red – no light in Cherenkov

AIDA²⁰²⁰ Interface to AIDA-2020 Silicon Tracker

- Readout chip designed for ILC
 - \rightarrow Short active time, then readout
 - More details <u>here</u>
- To reduce dead-time, take data only when particles are present
 - Sinusoidal energy ramp in DESY accelerator.
 - Get particles in beam-line only at peak energy of accelerator

- Provide a "spill" signal to SiTra
 - Use one of TLU inputs to monitor accelerator signal.
 - Parameters adjustable by setting registers.
 - Could be used at CERN PS/SPS
 - Could be used with Calorimeter readout systems
- Firmware due Feb/March

Beam Telescope: Multiple tracks per frame

- Can configure TLU to ignore BUSY from an DUT with EUDET handshake
 - E.g. Mimosa telescope + FE-4I:
 - Ignore busy from telescope
 - →Can have more than one trigger sent to FE-I4 during frame readout of Mimosa
 - Keep global trigger number (Same trigger number sent out to both Mimosa + FE-I4)
 - Whether DUT BUSY vetoes triggers is configurable.
 - For DUT where BUSY vetoes triggers, read out consecutive trigger numbers
 - For DUT where BUSY does not veto triggers, read out nonconsecutive trigger numbers (if >1 particle per frame)
 - Firmware tested in lab
 - Plans to test at DESY
 - Can reconstruct > 10 tracks per Mimosa frame
 - \rightarrow Can increase trigger rate to > 50 kHz

- First batch of "production" AIDA-2020 TLUs being assembled
 - A new batch will be manufactured soon
- Have tested with Mimosa Telescope and FEI-4
- Have tested simultaneous use of trigger/busy(EUDET) and synchronous(AIDA) interface
- Firmware in place to allow multiple triggers per Mimosa telescope frame
 - Tested in lab
 - Plans to test at DESY
 - Plans to test in beam
 - Order of magnitude higher trigger rate from AIDA beam telescopes
- Have tested simultaneous use of trigger/busy(EUDET) and synchronous(AIDA) interface
 - (Mimosa telescope + FE-I4) + TORCH
 - Could use to interface beam telescope with CALICE calorimeter.
- Firmware being written to interface with accelerator
 - Programmable "spill" signal
 - allow interface with AIDA-2020 Silicon tracker.

Backup Slides

• Trigger time-stamps of first few spills in a run

Trigger times

• Transition from FPGA Xilinx Series 6 (miniTLU) to Series 7 (v1C and later)

Currently working on bench with Enclustra AX3 FPGA

ARTIX TRIVIAL FMC CARRIER (ATFC)

HTTP://WWW.OHWR.ORG/PROJECTS/ATFC

- Designed by Samer Al-Kilani (UCL)
- Stand-alone
 - ... but design will eventually be be included in TLU
- Bare PCBs produced
- Waiting for components,
 - Then assembly of first two at UCL

- Current firmware direct port of miniTLU
 - Includes multiple registers to suppress meta-stability
 - Not yet optimized to reduce latency •

٠

INPUT PULSE

Time resolution test

- Granularity = 781 ps
- Work in progress

15 January, 2018

