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Tensor networks very powerful framework that 
thas emerged over the last 10 years. Mainly 
applied in theoretical quantum many body 
physics, condensed matter physics. We want 
to bring this framework to High energy 
physics. 



Motivation

• Hamiltonian simulations,  wave-functions, real-
time physics

• No sign problem, finite fermionic chemical 
potential

• Understand gauge theories in the tensor 
network language i.e. in  terms of their 
entanglement structure
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Outline

• (very brief) Introduction to tensor network states

•Systematics (for d=1+1):  gauge symmetry, local charge truncation, 
continuum limit

•Physics: static and real-time results

what turns your simulation of a gauge 
theory, into that of a gauge FIELD 
theory



You (low-energy state) are here

|� >= cs1,s2,...,sN |s1, s2, . . . , sN >

The tiny corner of Hilbert space

entanglement entropy. Entropy in this 
room is way smaller than that of a 
random state. basically because T is 
smaller than GUT Tev . Volume law tiny 
prefactor. 



TNS for 1+1 dimensional gauge theories
(B. Buyens, J. Haegeman, K.V.A., H. Verschelde, F. Verstraete, 

Phys. Rev. Lett.: 113 (2014) 091601;    proceedings Lattice 2014)

•Can be solved exactly for                (Schwinger ’62, Coleman ’76)

•Non-trivial physics, similar to QCD: e.g. confinement,  (anomalous) 
chiral symmetry breaking

d=1+1 QED a.k.a. the Schwinger model:

L = �1

4
Fµ�F

µ� + ⇥̄i�µ(⇤µ � igAµ)⇥ +m⇥̄⇥

g ! 1

dim g = 1, superrenormalizable


Nice benchmarkmodel: weak and 
strong coupling expansion.




Kogut-Susskind (            + staggered fermions) + Jordan-Wigner:
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Extra ingredient: gauge invariance/Gauss law
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gauge fields on the links. Electric field is conjugate 
conjugate to the gauge field


x is lattice-spacing in units g=1. We’ll be interested 
in the x to infinity limit. 


field theory: x-> infinity, pmax-> infinity (theta is 
continuous variable)


Gn is generator of local gauge transformations.


For the continuum theory what counts is g/m


Use Gauss law to integrate out the gauge-field all 
together. Byrnes M.C. Banuls. Non-local 
Hamiltonian.


We want to keep things local, which for instance will 
allow us to work in the thermodynamic limit.



block: 

 Matrix Product State

|� >= v+LA
q1
1 Aq2

2 Aq3
3 . . . Aqn

n . . . AqN
N vR|q1, q2, q3, . . . qn, . . . qN >

|q2n>= |s2n, p2n> |q2n+1>= |� s2n,�p2n>

= [As,p]↵�

Per charge sector, some bond-dimension that we 
can choose. 


Distribute bond-dimensions over different charge 
sectors , which given a total bond dimension will 
effectively truncate your Hilbert space



block: 

 gauge-invariant Matrix Product State

|q2n>= |s2n, p2n> |q2n+1>= |� s2n,�p2n>

V1 V2

V1 = ei✓p1 V2 = ei✓(p2� 1
2 (s2+1))

V1

= U=

V2

U+

= [As,p](q,�q);(r,⇥r) = [as,p]�q,⇥r�p,q+(s+1)/2�r,�p

Explain, well, how to generalize to non-
Abelian, to PEPS

Per charge sector, some bond-dimension that we 
can choose. 


Distribute bond-dimensions over different charge 
sectors , which given a total bond dimension will 
effectively truncate your Hilbert space
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E.g. n = 1, s = 1: p = q - 1; r = pe.g.   A1,p
1



 verifying Elitzur's theorem 
(and why you should exploit the block structure)

= ⌘
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Effective truncation local Hilbert space

L R
Schmidt-decomposition:
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X

p,i

q
�(p,i) |�p,i>L |��p,i>R

log10 �p,i

(B. Buyens, S. Montangero, J. Haegeman, F. Verstraete, K.V.A 
Phys. Rev. D 95, 094509 (2017) )

charge  sector p



Effective truncation local Hilbert space

L R
Schmidt-decomposition:
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Higher d? E.g. d=2+1 pure U(1), d=3+1 pure SU(3)



One-particle excitations

for gapped translation invariant local systems (also non-relativistic), the lowest 
lying exciting states can be obtained by applying a momentum superposition of 

a quasi-local operator on the ground-state:

|�(k)>=
X

n

eikanTnOkT
�n|�0>

One-particle excitations on top of MPS vacuum approximation:

CT |�(k, �)>= �eika|�(k, �)> (� = ±1)

|�(k, �)>= �meikma

+�m+1eik(m+1)a

+�m+2eik(m+2)a

. . .+

+ . . .

(Haegeman et al, Phys. Rev. B 85, 
100408)
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D = (5, 16, 42, 57, 51, 28, 8)
D = (3, 12, 31, 44, 38, 21, 6)
D = (5, 11, 28, 38, 35, 19, 6)
D = (2, 8, 20, 30, 28, 16, 5)
D = (2, 6, 17, 25, 21, 11, 3)

One-particle excitations: bond-dimension scaling

6 simulations, the lowest mass is the 
last one



One-particle excitations in a background electric field.

L ! L+ ↵

In principle sign problem, but bosonized 
version



E1(a) = E1(0) + aE 0
1(0) + . . .

One-particle excitations:  continuum extrapolation



E1(a) = E1(0) + aE 0
1(0) + . . .

One-particle excitations:  continuum extrapolation

M ⇡ c0
ga3/2

exp

� c1
g2a U(1) d=2+1

QCD d=3+1M ⇡ 1

a
exp

� 1
�0g2



One-particle excitations: Lorentz-invariance

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

k

E
2
(k

)

x = 100, 300, 800
x = 100, 300, 800,1

x = 1/(g2a2) = 100, 200, 300, 400, 600, 800

polynomial in a third order fit 
through largest five points. Control 
with quartic and polynomial fit 
through six point


CHALLENGE?



One-particle excitations: 
some snapshots of a meson wave-packet

bit confused by the CT violation.



Heavy background charges

-
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fractional charges, integer valued 
charges

+ -



Heavy background charges: uniform case
strong coupling weak coupling

weak coupling computation:



Heavy background charges: uniform case

UV finite von Neumann entropy

Probably something you can prove 
perturbatively (since your theory is 
superrenormalizable)


Does entropy make sense as a physical 
quantity?



+ -

Heavy background charges: string breaking, the Q=1 case

non-relativistic picture: electric field 
string, constant string tension, energy 
that grows linearly with the distance. At 
some point the energy is so large that it 
becomes energetically favorable to 
produce a light fermion pair out of the 
vacuum, which will screen the electric 
field



Estring =
Lg2

2

= 2m+ 1.0188
g4/3

m1/3

E2meson

non-relativistic level crossing, correction 
on 2m, for smaller masses this 
transitions is more gradual, m=0.75 , 
between Lg=4 and 6 . Electric field 
profile and charge cloud. Airy function.







Real-time simulations

•Non-equilibrium evolution of a pure quantum state. 
 Thermalization or not:-under which conditions do we have local relaxation?
                                 -which systems relax to local Gibbs states?

•We performed the real-time simulation of the Schwinger Mechanism: a 
classical background electric field               induces (fermionic) particle pair 
production.

•This process was studied before in the semi-classical approximation (Kluger et al, 
Phys. Rev. D, 45 (1992) 4659; Hebenstreit et al, Phys. Rev. D, 87, 105006 (2013)) 

•We use iTEBD Vidal, PRL 98 (2007), 070201 to perform the real-time evolution at the 
full quantum level. 

 

E > m2/g

(B. Buyens, J. Haegeman, K.V.A., H. Verschelde, F. Verstraete, 
Phys. Rev. Lett.: 113 (2014) 091601;    arXiv:1612.00739)

E^2/m 


Energy of dipole 2m


Delta energy=2Eg/m>2m


E>m^2/g


classical, no backreaction




pair density current

electric field entanglement entropy

quench: at t=0

       

Ln ! Ln + �
weak fields:

M. Kormos, M. Collura, G. Takacs, 
P. Calabrese Nature Physics 13 

(2017)

arXiv:1612.00739



understanding weak field behavior from 1-particle states 
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1.define creation/annihilation operators for the 1- particle asymptotic states of 

2.assume:

3. this allows the self-consistent calculation of:

4. which in turn leads to a prediction for the time-evolution of an arbitrary observable

H↵

and

in-states, out-states, only defined 
at zero density. We are working at 
non-zero density.


we’re ignoring a^+a^+ terms in H, 
but this is part of the assumption


this will work as long as the density 



Real-time simulation Schwinger mechanism
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This is the first ever ab-initio real-time 
simulation of a full quantum gauge field 
theory. Long history, studied in different 
semi-classical approximations, 
perturbation theory, classical kinetic 
picture . 


physical picture: initially particle pair 
production. Pairs in an electric field 
produce current. Through Ampere’s 
law, current changes the electric field. 
Electric field goes down, particle pair 
production halts, and we get damped 
oscillations.


Entanglement is the problem.


Continuum limit.



Thermalization?

(B. Buyens et al, Phys. Rev. D 94, 085018 (2016))



Conclusions

• For d=1+1, MPS has produced almost anything you would 
dream of (at least regarding simulations of gauge (field) 
theories

• For higher d:

1. parent-Hamiltonian philosophy

2. Variational approach for 
specific microscopic 
Hamiltonians.

see.eg. Haegeman et al, Phys. Rev. X 5, 
011024 (2015), 

Zohar et al, Annals of Physics (2015), pp. 
385-439  and Ann. Phys 374, 84-137 (2016) 

(L. Vanderstraeten et al,10.1103/PhysRevB.
94.155123)



Extra slides



Time Dependent Variational principle

i
d

dt
|�>= H|�>�

+

+

. . .+

⌘
imaginary time evolution

ground-state approximation

(Haegeman et al, PRL 107, 070601 
(2011) 

i
d

dt

TDVP; we approximate the exact time-evolution with 
a time-evolution within your anzats manifold. At each 
time-step we project the right-hand side of the 
Schrodinger equation onto the derivative of an MPS/
tangent plane of the MPS manifold. 



Exponential growth bond-dimension during linear growth 
entropy (orange line):  
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