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Motivation: Quantum theory and geometry

Quantum gravity

Quantum information

Gauge/gravity duality (AdS/CFT correspondence)
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Duality

Duality:



Duality

Duality:

Gauge/gravity duality:

A quantum theory without gravity is related to a gravity theory
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Gauge/Gravity Duality

Conjecture which follows from a low-energy limit of string theory

Duality:

Quantum field theory at strong coupling
⇔ Theory of gravitation at weak coupling

Holography:

Quantum field theory in d dimensions
⇔ Gravitational theory in d+ 1 dimensions

Quantum field theory defined on the boundary of the d+1-dimensional space
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Gauge/Gravity Duality: String Theory Origin

5



AdS/CFT correspondence Maldacena 1997

Example of gauge/gravity duality with huge amount of symmetry

AdS: Anti-de Sitter space: CFT: Conformal field theory
Hyperbolic space Example: QFT at RG fixed point
with constant negative curvature

ds2 = L2

z2

(
ηµνdx

µdxν + dz2
)

Quelle: Institute of Physics, Copyright: C. Escher
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Gauge/Gravity Duality: Bulk-boundary correspondence

Quantum observables at the boundary of the curved space

may be calculated from propagation through curved space
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Gauge/Gravity Duality: Bulk-boundary correspondence

Quantum theory at finite temperature:

Dual to gravity theory with black hole

Hawking temperature identified with temperature in the dual field theory
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Book on gauge/gravity duality
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Entanglement entropy: Quantum mechanics

Density matrix ρ =
∑
n
|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ



Entanglement entropy: Quantum mechanics

Density matrix ρ =
∑
n
|Ψn〉〈Ψn|

Von Neumann entropy SvN = −Tr(ρ ln ρ)

Maximised when ρ diagonal with equal entries,
vanishes for pure states where ρ2 = ρ

Consider product Hilbert space H = HA ⊗HB

Reduced density matrix
ρA = TrBρtot

Entanglement entropy
SA = −TrAρA ln ρA

Analogy to black hole entropy
(‘Lost information’ hidden in B)
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Entanglement entropy: Gauge/gravity duality

Ryu-Takayanagi 2006:

SA =
AreaγA

4GN

γA: Minimal area bulk surface with ∂A = ∂γA

Satisfies strong subadditivity
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Entanglement entropy: Examples

Conformal field theory in 1+1 dimensions (Cardy, Calabrese):

S =
c

3
ln(`Λ)

Reproduced by Ryu-Takayanagi result

Λ ∝ 1/ε, ε boundary cut-off in radial direction

c = 3L/(2G3)

Finite temperature (at small `):

S(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016

Analytic expression in closed form for strip region:

z∗: Turning point of minimal surface

Given implicity in terms of strip width `
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016
Entanglement density

σ =
S(T )− S(T = 0)

vol(A)

Non-monotonic behaviour
signals violation of area
theorem
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Holographic entanglement entropy: Finite temperature

Hubeny, Rangamani, Takayanagi 0705.0016

figure by Raimond Abt
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Entanglement entropy: Tensor networks

MERA networks:
CFT ground states

Implement RG idea

Networks defined on discretizations of hyperbolic space

cf. AdS/CFT: Extra dimension corresponds to RG scale

MERA Network:
Entanglement entropy bounded from above by Ryu-Takayanagi formula
(Swingle 0905.1317)
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Entanglement entropy: Tensor networks

Susskind, Stanford

A fixed spatial volume is associated to each tensor

Subnetwork connecting RT surface to boundary provides map HRT → HA

RT surface:
Smallest Hilbert space for any cut through the network bounded by ∂A



Entanglement entropy: Tensor networks

Susskind, Stanford

A fixed spatial volume is associated to each tensor

Subnetwork connecting RT surface to boundary provides map HRT → HA

RT surface:
Smallest Hilbert space for any cut through the network bounded by ∂A

Natural realization of complexity = volume conjecture
Number of tensors measures complexity
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Entanglement entropy: Tensor networks

Quantum error-correcting codes satisfy discretized Ryu-Takayanagi formula

(Pastawski, Yoshida, Harlow, Preskill 1503.06237)

Building block: Tensor with maximal entanglement along any bipartition

⇒ Isometry from the bulk Hilbert space to the boundary Hilbert space
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Entanglement entropy: Random tensor networks

Random tensor network:

Observables obtained by averaging over tensor network states
built from random tensors living on a fixed graph

Random tensor networks may be mapped to an associated Ising model
Hayden et al 1601.01694

Average value of second Renyi entropy related to partition function

Tr(ρ2
A) ∼ ZA

New paper (complexity): Abt, J.E., Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes
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Entanglement entropy: Random tensor networks

Numerical simulation of entanglement entropy in black hole background
Map to associated Ising model H. Hinrichsen, Würzburg University, 1710.01327
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Gauge/gravity duality: Time evolution of entanglement entropy

J.E., Flory, Fernandez, Megias, Straub, Witkowski 1705.04696

Very large temperature differences: ∆S(t) ∝ vEseqA t+ . . .
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Complexity:

Susskind: Complexity = Volume and Complexity = Action proposals

Abt, J.E., Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes:
Modify volume proposal to

C(A) = −
1

2

∫
Σ

d
d+1
xRdσ
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Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem
see talk by I. Reyes

For black hole:

C = x
ε − π

∆C = 2π



Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem
see talk by I. Reyes

For black hole:

C = x
ε − π

∆C = 2π

This is reproduced using random tensor networks
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Complexity: Random tensor networks
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Complexity: Relation to field theory using kinematic space

Kinematic space: Czech et al

Kinematic space of an asymptotically AdS3 spacetime:
Space of its oriented, boundary-anchored geodesics

Use this approach to relate bulk volumes to field-theory entanglement entropy
Volume from integration over geodesics that intersect it
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Fisher information metric

Use of geometry widespread in information theory
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Fisher information metric

Use of geometry widespread in information theory

Fisher metric in information theory: Metric on space of probability distributions

Probability distribution p(x, ~θ), x a stochastic variable, ~θ a set of n external parameters

Spectrum γ(x, ~θ) ≡ − ln p(x, θ)

Fisher metric

gµν(~θ) =

∫
dx p(x, ~θ)

∂γ(x, θ)

∂θµ
∂γ(x, θ)

∂θν
= 〈∂µγ∂νγ〉

For Gaussian distribution (saddle point approximation)

p(x1, . . . , xn) =
1

(
√

2πσ)n
exp

(
−

n∑
i=1

(xi − x̄i)2

2σ2

)

Fisher metric gives Anti-de Sitter space:

ds
2

=
1

σ2

(
dx̄idx̄

i
+ 2ndσ

2
)
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Fisher information metric

Question: Understanding the dynamics governing this metric

In AdS/CFT, gravity action and dynamics obtained from
saddle-point approximation of string theory

Information theory may help to establish the gravity dynamics more generally

Further insight using tensor networks?
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Fisher information in gauge/gravity duality

Banerjee, J.E., Sarkar 1701.02319

Fidelity susceptibility F

Fisher metric

Gmn =
∂2F

∂λm∂λn

Couplings λm are dual to to deformations of the AdS metric

Proposal: F = vol(λ)− vol(0) (finite expression)

For λ a metric deformation the result matches
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Conclusion and outlook

New relations between quantum theory and gravity

Tensor networks may contribute to a further understanding of gauge/gravity
duality

Conversely,
gauge/gravity duality provides predictions for strongly coupled systems
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