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Motivation: Quantum theory and geometry

Quantum gravity
Quantum information

Gauge/gravity duality (AdS/CFT correspondence)
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Gauge/gravity duality:

A quantum theory without gravity is related to a gravity theory



Gauge/Gravity Duality

Conjecture which follows from a low-energy limit of string theory

Duality:

Quantum field theory at strong coupling
< Theory of gravitation at weak coupling

Holography:

Quantum field theory in d dimensions
< Gravitational theory in d + 1 dimensions

Quantum field theory defined on the boundary of the d+ 1-dimensional space



Gauge/Gravity Duality: String Theory Origin
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AdS/CFT correspondence Maldacena 1997

Example of gauge/gravity duality with huge amount of symmetry

AdS: Anti-de Sitter space: CFT: Conformal field theory
Hyperbolic space Example: QFT at RG fixed point
with constant negative curvature

ds?® = 5—22 (nuvdatdz” + dz?)

Quelle: Institute of Physics, Copyright: C. Escher



Gauge/Gravity Duality: Bulk-boundary correspondence

Quantum observables at the boundary of the curved space

may be calculated from propagation through curved space

Minkowski Anti-de Sitter
spacetime spacetime

extra dimension



Gauge/Gravity Duality: Bulk-boundary correspondence

Quantum theory at finite temperature:

Dual to gravity theory with black hole

Hawking temperature identified with temperature in the dual field theory






Retarded Green’s Functions in Strongly Coupled Systems

Singularity

Anti-de Sitter
black hole
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subject to infalling boundary condition at horizon
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Book on gauge/gravity duality
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Gauge/Gravity
Duality

Foundations and Applications

Martin Ammon
Johanna Erdmenger
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Entanglement entropy: Quantum mechanics

Density matrix p = ) |V, ) (¥,

Von Neumann entropy Syny = —Tr(pln p)

Maximised when p diagonal with equal entries,
vanishes for pure states where p* = p



Entanglement entropy: Quantum mechanics

Density matrix p = ) |V, ) (¥,

Von Neumann entropy Syny = —Tr(pln p)

Maximised when p diagonal with equal entries,
vanishes for pure states where p* = p

Consider product Hilbert space H = Ha ® HB

Reduced density matrix
PA — Tertot

Entanglement entropy
Sa=—Trapalnpa

Analogy to black hole entropy
(‘Lost information’ hidden in B)
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Entanglement entropy: Gauge/gravity duality

AdS

Ryu-Takayanagi 2006:

g, _ Areayy
47 4Gy

va: Minimal area bulk surface with 0A = 04

Satisfies strong subadditivity

S4+ 88 > SquB + SanB
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Entanglement entropy: Examples

Conformal field theory in 1+1 dimensions (Cardy, Calabrese):

C

Reproduced by Ryu-Takayanagi result

A x 1/€, e boundary cut-off in radial direction
c=3L/(2G3)

Finite temperature (at small ¢):

S(t) = S <L sinh(27r€T)>

el
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Holographic entanglement entropy: Arbitrary dimensions

J.E., Miekley 1709.07016

Analytic expression in closed form for strip region:
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2. Turning point of minimal surface

Given implicity in terms of strip width /¢
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Holographic entanglement entropy: Arbitrary dimensions

Entanglement density
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J.E., Miekley 1709.07016

Non-monotonic behaviour
signals violation of area
theorem
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Holographic entanglement entropy: Finite temperature

Hubeny, Rangamani, Takayanagi 0705.0016

figure by Raimond Abt
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Entanglement entropy: Tensor networks

» space
ONe Q QO O @ ONe

MERA networks:
CFT ground states

Implement RG idea

depth (increasingly
coarse grained)

Networks defined on discretizations of hyperbolic space
cf. AdS/CFT: Extra dimension corresponds to RG scale

MERA Network:
Entanglement entropy bounded from above by Ryu-Takayanagi formula
(Swingle 0905.1317)
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Entanglement entropy: Tensor networks

Susskind, Stanford
A fixed spatial volume is associated to each tensor
Subnetwork connecting RT surface to boundary provides map Hrr — Ha

RT surface:
Smallest Hilbert space for any cut through the network bounded by 0A



Entanglement entropy: Tensor networks

Susskind, Stanford
A fixed spatial volume is associated to each tensor

Subnetwork connecting RT surface to boundary provides map Hrr — Ha

RT surface:
Smallest Hilbert space for any cut through the network bounded by 0A

Natural realization of complexity = volume conjecture
Number of tensors measures complexity
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Entanglement entropy: Tensor networks

Quantum error-correcting codes satisfy discretized Ryu-Takayanagi formula

(Pastawski, Yoshida, Harlow, Preskill 1503.06237)

Building block: Tensor with maximal entanglement along any bipartition

= Isometry from the bulk Hilbert space to the boundary Hilbert space
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Entanglement entropy: Random tensor networks

Random tensor network:

Observables obtained by averaging over tensor network states
built from random tensors living on a fixed graph

Random tensor networks may be mapped to an associated Ising model
Hayden et al 1601.01694

Average value of second Renyi entropy related to partition function

New paper (complexity): Abt, J.E., Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes
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Entanglement entropy: Random tensor networks

Numerical simulation of entanglement entropy in black hole background
Map to associated Ising model H. Hinrichsen, Wrzburg University, 1710.01327

FIG. 6. BTZ black hole (left) with radial coordinate
arctan(r/L) mapped to conformal coordinates ¢,n (right)
where an Ising model on a square lattice is embedded. The
top and the bottom row of spins are fixed according to the re-
spective boundary conditions (red=7, blue=]) while the green
spins are allowed to fluctuate.
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Gauge/gravity duality: Time evolution

of entanglement entropy

J.E., Flory, Fernandez, Megias, Straub, Witkowski 1705.04696
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Very large temperature differences: AS(t) x vgseqAt + ...
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Complexity:

Susskind: Complexity = Volume and Complexity = Action proposals

Abt, J.E., Hinrichsen, Melby-Thompson, Meyer, Northe, Reyes:
Modify volume proposal to

AdSg4q
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Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem
see talk by |. Reyes

For black hole:

AC =27



Complexity

For d = 2, evaluate complexity using Gauss-Bonnet theorem
see talk by I. Reyes

For black hole:

AC =27

This is reproduced using random tensor networks
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Complexity: Random tensor networks

FIG. 8. Numerical results on a lattice with 200 x 200 sites
for a BTZ black hole with mass M = 0.1. Left: Numerically
measured entanglement of the two solutions as functions of
the subregion size. As can be seen, the lines cross precisely
at the theoretically expected transition point, marked by the
vertical green dashed line. Right: Corresponding complexity,
reproducing the linear law. The inset shows a magnification
where the discontinuous jump occurs.
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Complexity: Relation to field theory using kinematic space

Kinematic space: Czech et al

Kinematic space of an asymptotically AdS; spacetime:
Space of its oriented, boundary-anchored geodesics

Use this approach to relate bulk volumes to field-theory entanglement entropy
Volume from integration over geodesics that intersect it
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Fisher information metric

Use of geometry widespread in information theory



Fisher information metric

Use of geometry widespread in information theory

Fisher metric in information theory: Metric on space of probability distributions



Fisher information metric

Use of geometry widespread in information theory

Fisher metric in information theory: Metric on space of probability distributions
Probability distribution p(x, 67), x a stochastic variable, 0 a set of n external parameters

Spectrum y(z,0) = — In p(x, 0)

Fisher metric

N N 8'7(337 9) 87(337 6)
90) = [ dop(e, L2 — (0,70,7)

For Gaussian distribution (saddle point approximation)

_ (i — &)°
p(x1,...,xn) = (VZno) P( Z 552 >

=1

Fisher metric gives Anti-de Sitter space:

d2_1 L 2
S ——Q(dxid:c —|—2nda)
o
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Fisher information metric




Fisher information metric

Question: Understanding the dynamics governing this metric



Fisher information metric

Question: Understanding the dynamics governing this metric

In AdS/CFT, gravity action and dynamics obtained from
saddle-point approximation of string theory

Information theory may help to establish the gravity dynamics more generally

Further insight using tensor networks?
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Fisher information in gauge/gravity duality

Banerjee, J.E., Sarkar 1701.02319
Fidelity susceptibility F

Fisher metric
O*F

Gmn = S o

Couplings \,,, are dual to to deformations of the AdS metric
Proposal: F' = vol(\) — vol(0) (finite expression)

For \ a metric deformation the result matches
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Conclusion and outlook

New relations between quantum theory and gravity

Tensor networks may contribute to a further understanding of gauge/gravity
duality

Conversely,
gauge/gravity duality provides predictions for strongly coupled systems

31



