

PONTIFICIA Universidad

Holographic complexity from topology in AdS₃/CFT₂

Ignacio A. Reyes

JMU, Würzburg PUC, Santiago

Arxiv 1710.01327 Abt, Erdmenger, Hinrichsen, Melby-Thompson, Northe, Meyer

DESY, Hamburg 2017

Intro: Holographic subregion complexity

Gravity: Gauss-Bonnet

Random Tensor Networks

CFT: Kinematic space

Holographic complexity

Alishahiha '15: "Holographic Complexity" for time slice,

$$\mathcal{C}(A) \equiv -\frac{1}{2} \int_{\Sigma} R \, d\sigma \quad \sim V(\Sigma) \text{ if } R = \text{const}$$

What system?

Gravity

Zero temperature

Constant time slice of AdS3, single interval

$$\begin{array}{ll} \text{Gauss} \\ \text{Bonnet} \end{array} \quad \mathcal{C}(A) = -\frac{1}{2} \int_{\Sigma} R \, d\sigma = \int_{\partial \Sigma} k_g ds - 2\pi \chi(\Sigma) \end{array}$$

 k_g : geodesic curvature, $\ \chi(\Sigma)=1$

$$\int_{\partial \Sigma} k_g ds = \int_{\gamma_{RT}} k_g ds + \int_{\gamma_{\epsilon}} k_g ds + \text{corner angles} = \frac{x}{\epsilon} + \pi$$

$$\mathcal{C}(x) = \frac{x}{\epsilon} - \pi$$

Finite temperature

CFT2 at finite T dual to black hole at same T Hubeny et al. '13: two possible phases – γ RT homologous to A

Subregion complexity is temperature independent* in CFT2

Naked singularities

At M=0 horizon disappears

-1<M<0 correspond to conical singularities

Enforce homology condition on RT
Use the second structure of the second str

Complexity is M-dependent:

$$\mathcal{C} = \frac{x}{\epsilon} + \pi - 2\pi\sqrt{-M}$$

Homology condition of RT is crucial to get correct answer!

Gravity side

Complexity as function of mass, for fixed entangling region

Tensor Networks

Tensor Networks

AdS/MERA: Swingle '09 MERA \rightarrow lower bound for EE \rightarrow RT Complexity: min. number gates to achieve some task Holographic complexity \Rightarrow what task?

Compression: represent ρ_A in lowest dim. Hilbert space

⇒ Complexity of running the renormalisation procedure

$$\mathcal{C}(A) \equiv -\frac{1}{2} \int_{\Sigma} R \, d\sigma$$

counts number of tensors inside RT surface

RT transition: still compress to same size, but it costs more. Reordering of information is topologically different.

Random Tensor Networks

Random Tensor Networks [1601.01694] (M. Walter's talk) saturate the RT formula

Tessellation of hyperbolic plane

Compute second Rényi entropy

Average over random tensors

 $\overline{|V_x\rangle\langle V_x|\otimes |V_x\rangle\langle V_x|}\sim I_x+\mathcal{F}_x$

Result:
$$\overline{S_A^{(2)}} = F_1 - F_0$$

'Swap trick'

Numerical simulation

To mimic BH metric, we work with variable bond dimension that reproduces the finite temperature EE

Complexity is mapped to magnetization

Deviations due to lattice effects

CFT: kinematic space

Czech et al '15:

Reconstructing the bulk using the EE of boundary

How are entanglement and subregion complexity related? → Probe subregion with other subregions

e.g. for the entire circle,

$$\mathcal{C}(\text{circle}) = -\frac{1}{2} \int_0^{\pi} d\alpha \ S(\alpha) \partial_{\alpha}^2 S(\alpha)$$

Conclusions

Compression complexity in CFT2 is T- independent/'quantized'

Numerical study \rightarrow RTN

New CFT construction through kinematic space

Outlook

Curvature proposal: non-constant examples

Compression algorithm \rightarrow T-dependence?

How does CFT know about topology?

Entanglement ⇔ Subregion complexity

Transitions: zero temperature

The RT surface can have multiple 'phases': the global minimal surface gives the correct answer

Two intervals in AdS

$$\mathcal{C} = \int_{\partial \Sigma} k_g ds - 2\pi \chi(\Sigma)$$

$$\Delta \mathcal{C} = \mathcal{C}_{II} - \mathcal{C}_I = -2\pi \Delta \chi = 2\pi$$