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Intro: Holographic subregion complexity

Gravity: Gauss-Bonnet

Random Tensor Networks

CFT: Kinematic space



| Gravity |

AdS

Ryu-Takayanagi '06
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Holographic complexity

Alishahiha ’15: “Holographic Complexity” for time slice,

AdSai1
C(A) = VZ(LZ) r
We propose in AdS3/CFT2, EEFTd *****
= ; /z Rdo ~V(¥)if R = const

What system?

AdS; conical singularities black holes
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Gravity



Zero temperature

Constant time slice of AdS3, single interval

S

Gauss __1 __ _
Sonnet C(A) = Q/ZRdU_/az kods — 2mx(X)

k, : geodesic curvature, y(X) =1

/ kods = / kqds + / kgds + corner angles = il 4o
0 YRT ol
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Finite temperature

CFT2 at finite T dual to black hole at same T

Hubeny et al. '13: two possible phases - ¥RT homologous to A

Phase a Phase b
identical to AdS horizon also a geodesic
X(Xq) =1 xX(2p) =0
| / kg ds — 0
AC = 27 T

Subregion complexity is temperature independent* in CFT2




Naked singularities

At M=0 horizon disappears

-1<M<0 correspond to conical singularities

Enforce homology condition on RT

\

cut small ring Ys around singularity

singularity ]{ kgds =2m+/ f(r) — 2nv—-M , M <0
Vs

r—0

Complexity is M-dependent:

CZ{‘FTF—QTF\/—M
€

Homology condition of RT is crucial to get correct answer!



Gravity side

Complexity as function of mass, for fixed entangling region

Conical Defects BTZ Bli\(:k Holes

>
M= -1 M =0 M = M* 4

AdS; Extremal BTZ



Tensor Networks



Tensor Networks

AdS/MERA: Swingle '09 MERA — lower bound for EE — RT

Complexity: min. number gates to achieve some task

Holographic complexity = what task?

Compression: represent pa in lowest dim. Hilbert space

A A A

-l HRTG Sp(4) < log(d) 74l
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= Complexity of running the renormalisation procedure



inside RT surface

C(A) — ; / Rdo counts number of tensors
by

RT transition: still compress to same size, but it costs more.

Reordering of information is topologically different.




Random Tensor Networks

Random Tensor Networks [1601.01694] (M. Walter’s
talk) saturate the RT formula

Tessellation of hyperbolic plane

Compute second Rényi entropy I

Average over random tensors

’Vw><vw’ & ‘Vx><vcv‘ ~ Iy + Fy

v

Result: Sff) = Fy| — F}




Numerical simulation

To mimic BH metric, we work with variable bond
dimension that reproduces the finite temperature EE

Complexity is mapped to magnetization

Deviations due to lattice effects

E(M)
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CFT: kinematic space

Czech et al ’15:;

Reconstructing the bulk
using the EE of boundary

How are entanglement and subregion complexity related?
— Probe subregion with other subregions

e.g. for the entire circle,

C(circle) = —% /O7T da S(a)02S(a)



Conclusions

Compression complexity in CFT2 is T- independent/‘quantized’
Numerical study — RTN

New CFT construction through kinematic space

Outlook

Curvature proposal: non-constant examples

Compression algorithm — T-dependence?
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How does CFT know about topology? R

Entanglement < Subregion complexity



Transitions: zero temperature

The RT surface can have multiple ‘phases’: the global
minimal surface gives the correct answer

Two intervals in AdS

Phase 1 Phase 11

YRT %MT
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C = / kods — 2mx(X)
0>

AC =Crr —C;r = 21mAx =27



