

The ATLAS & CMS Tracking Detectors

Katja Klein 1. Physikalisches Institut B RWTH Aachen University

Helmholtz Alliance Workshop Hamburg, July 1st, 2009

Outline

- Requirements
- Atlas & CMS tracker layouts
 - -Micro-strip trackers
 - Pixel detectors
 - Transition radiation tracker
- Expected and observed performance
- Detector status
- Summary

Each topic is discussed for CMS and ATLAS

- Up to 1000 particles from 20 minimum bias events per bunch crossing
 → fine granularity to keep occupancy at few %
- Bunch spacing of 25ns \rightarrow **fast electronics** to resolve bunch crossings
- Efficient and precise tracking → robust pattern recognition & precise alignment of the sensitive elements
- Excellent momentum resolution for low and high $p_{\rm T}$ tracks
- Precise reconstruction of primary & secondary vertices
- Low mass to minimize undesired particle interactions
- Radiation hardness
- Reasonable cost
- Low risk of failure

Solutions found by ATLAS & CMS are similar, but not identical.

The CMS Tracker

The ATLAS Tracker (= Inner Detector, ID)

- Silicon pixel detector and micro-strip tracker (Semiconductor Tracker, SCT)
- Transition Radiation Tracker (TRT) with straw tubes for r > 0.5m
- Located inside **B = 2T solenoidal field**

Tracking Detectors

Micro-Strip Detectors - Basics

- Reverse biased diode; bias voltage 100-500V
- MIP ionizes detector material \rightarrow 23 000 electrons in 300 μm of silicon
- \bullet Electric field \rightarrow electrons and holes drift to electrodes
- Segmentation of implants (strips, pixels) \rightarrow spatial information (1D, 2D)
- Amplification, shaping, digitization

- **Double-sided modules**: two **single-sided modules** mounted back-to-back with a stereo angle of $5.7^{\circ} \rightarrow$ position information along strips
- Resolution in barrel: 23-53 μ m in r ϕ (p/ $\sqrt{12}$) and 230-530 μ m in z (p/ $\sqrt{12}$ /sin(5.7°))
- 9.3 million strips, 15 148 modules, 200m² of silicon
- Designed to stand fluences up to 1.6 x $10^{14}n_{eq}/cm^2$ and a dose of 70 kGy, corr. to 500fb⁻¹

The CMS Silicon Strip Modules

The CMS Silicon Strip Tracker

- High modularity: modules mounted onto separate carbon fibre support structures (rods, petals)
- Substructures mounted onto end caps disks and barrel wheels
- Optical read-out & communication
- "Simple" C₆F₁₄ monophase cooling system
- FE-power consumption 33kW

Front of a TEC equipped with "petals"

The ATLAS Silicon Strip Tracker

- All modules are truly double-sided with 40mrad (2.3°) stereo angle
- Expected spatial resolution: $17\mu m$ in $r\phi$ (p/ $\sqrt{12}/\sqrt{2}$) and $580\mu m$ in z/r (p/ $\sqrt{12}/\sin(2.3^{\circ})$)
- 6.3 million strips, 4 088 modules, 63m² of silicon
- Evaporative C_3F_8 cooling system provides sensor temperature of $\approx -7^{\circ}C$

Barrel module (all identical)

End cap module: 3 types

- 285 μ m thick p-in-n sensors from 4 inch wafers
- Tight requirements on cooling and mounting precision (e.g. barrel: 8μ m build tolerance \perp to strips; achieved RMS: $\pm 2.1\mu$ m)
- Read-out ASIC in radiation-tolerant bi-CMOS DMILL technology
- Non-sparsified binary readout

The ATLAS Silicon Strip Tracker

- Modules are directly integrated onto barrels/disks
- Optical read-out & communication
- 22kW initial FE-power

The CMS Pixel Detector

Barrel Pixels (BPIX): 3 barrel layers at 4.4, 7.3, 10.2cm 768 modules of 2 types

Forward Pixels (FPIX): 2 x 2 disks at $z = \pm 34.5, \pm 46.5$ cm 192 panels of 4 types Tilted by 20° for charge sharing

- Pixel cell size: 100μm (rφ) x 150μm (z)
- Zero-suppressed readout of analogue pulse height \to charge sharing due to Lorentz-angle & tilt leads to a spatial resolution of 15-20 μm
- In total 66 million pixels and 1m² of silicon
- Designed to stand 6 x $10^{14}n_{eq}/cm^2$ = 2 years at design luminosity

The CMS Pixel Detector Modules

- n+ pixels on n substrate for radiation hardness, DC-coupled
- Hybrid technology: sensor bumb-bonded to read-out chips (0.25 μ m CMOS)
- FPIX and BPIX sensors and modules differ (p-stop vs. p-spray isolation etc.)

The CMS Pixel Detector

- Constructed in half-shells → extraction during yearly shut-downs possible
- Must be extracted for beam pipe bakeout
- Optical readout & communication
- C₆F₁₄ monophase cooling system
- FE-power consumption: 3.6kW

The ATLAS Pixel Detector

- Minimal pixel cell size: 50µm (r ϕ) x 400µm (z, r) \rightarrow res.: 10µm in r ϕ / 115µm in z, r
- In total 80 million pixels and 1.7m² of silicon
- Inner layer must be replaced after 3 years at design luminosity
- Central part of beam pipe is part of the pixel system
- Evaporative cooling system with C_3F_8 ; sensor temperature $\approx -7^\circ C$

The ATLAS Pixel Detector Modules

- n+-on-n, AC-coupled, 250 μ m thick
- Hybrid technology
- $0.25 \mu m$ CMOS
- Digital read-out: charge is digitized as "time-over-threshold"
- All modules are basically identical

The ATLAS Pixel Detector

- Barrel modules mounted onto staves
- Optical read-out & communication
- Initial FE-power 6kW

The ATLAS Transition Radiation Tracker

- Two functionalities: continuous tracking + e/π separation with transition radiation
- Acceptance: 35-40 hits up to $|\eta| = 2$ for $p_T > 0.5 GeV$
- Operated at room temperature

The ATLAS TRT Straw Tubes

The ATLAS TRT

- If charged particle with γ = E/m > 1000 crosses boundary with diff. dielectric constants
 → transition radiation
- Radiator: polypropylene fibres (barrel) or foils (end cap)
- Photons are absorbed in Xenon gas
- 7 10 high threshold hits for e^- with $p_T > 2GeV$

Tracker Parameters for Reference

Component	Parameter	CMS	ATLAS
Magnetic field		4T	2T
Pixel	Technology	n⁺-in-n	n⁺-in-n
	Pixel size	100 x 150μm²	50 x 400μm²
	# of pixels	66M	80M
	Active area	1m ²	1.7m ²
	Read-out	Analogue	Time-over-threshold
	Res. rø x z	15-20µm both	10μm x 115μm
Silicon strips	Technology	p-in-n	p-in-n
	Pitch in barrel	80-183µm	80µm
	# of channels	9.3M	6.3M
	Active area	200m ²	63m ²
	Stereo angle	100mrad Some modules	40mrad All modules
	Read-out	Analogue	Binary
	Res. rø x z (binary)	23-35μm x 230/530μm	17μm x 580μm
TRT	Resolution rø		130µm

CMS & ATLAS Tracker Material Budget (X₀)

- Bremsstrahlung, photon conversion, multiple scattering, hadronic interactions
- Recall: after traversing **one** radiation length $x_0 \dots$
 - ... the energy E_0 of an electron drops to $E_0/e = 37\%$!
 - $-\ldots$ the conversion probability for a photon is 54% !
 - \hdots the RMS of the deflection for electrons with 1 GeV is ~ 50 μm !

Tracking Detectors

CMS & ATLAS Exp. Global Tracking Efficiency

- CMS: preliminary simulation study with most recent material budget
- ATLAS: 2008 JINST 3 S08003

Reduction of lever arm for $|\eta| > 1.6$ Contribution from mult. scattering: 20-30%

 CMS: preliminary simulation study with most recent material budget

• ATLAS: 2008 JINST 3 S08003

• Recall: $B(ATLAS) = \frac{1}{2} B(CMS)$

Dominated by multiple scattering, resolution follows amount of traversed material

- Global data taking periods with magnetic field in autumn 2008
- CMS: "Cosmic Run At Four Tesla" aka CRAFT 2008
 ~ 85k / 2.2M tracks in the pixels /strip tracker with magnet on
- ATLAS: ~ 190k / 880k tracks with pixel / SCT hits and magnet on
- Can only show approved results here!

CMS		
Subdetector	Active channels	
Pixel barrel	99.1%	
Pixel forward	94.0%	
Inner Barrel/disks	96.6%	
Outer Barrel	98%	
End Cap +	99.2%	
End Cap -	97.8%	

ATLAS			
Subdetector	Active channels		
Pixel *	98.5%		
SCT barrel	99%		
SCT end caps	97%		
TRT	98%		

* In data taking: barrel 98%, end caps 85%

- Charge of on-track clusters
- Correction for track impact angle applied
- Clusters with > 1 pixels

- B = 0 or B || E: charge carriers drift along E direction
- B \perp E (barrel or tilt) \rightarrow charge carriers drift with Lorentz angle θ_1
- Cluster position is shifted (\rightarrow calibration) & broadend (\rightarrow charge sharing)
- Cluster width is minimal for tracks with incident angle = θ_1
- $tan(\theta_1) = B \cdot \mu_H$; Hall-mobility $\mu_H(T, V, t, fluence)$

Performance of the ATLAS Pixel Detector

- Distinguish real clusters from noise (N) by their signal (S) \rightarrow high S/N desirable
- Signal charge depends on traversed length, i.e. sensor thickness and track angle \rightarrow correction for track incident angle applied
- Cluster noise N depends on capacitance, i.e. strip length
- Values guarantee high hit efficiency even after irradiation (30-40% loss expected)

Subdetector	S/N MPV *	
TOB (500μm)	32	
TEC (500μm)	32	
TIB (320µm)	25	
TID (320μm)	28	
TEC (320μm)	27	

* in peak read-out mode

- Signal charge not measured with binary readout \rightarrow noise occupancy should be small
- Specification after irradiation: 0.5 x 10-3
- Note: noise in DMILL chips increases with irradiation

Hit Efficiency in Strip Trackers

Hit efficiency per layer

- Layer under study excl. from tracking
- Faulty modules are masked

- Tracks reconstructed in muon drift tube chambers ("tag & probe")
- pp-like topology: $|d_{xy}| < 30$ cm, $|d_z| < 30$ cm, $|\eta| < 1.0$, $0.5 < |\phi| < 2.5$

Efficiency [%]	Data	MC
Combinatorial Kalman Filter (CKF) default for pp	99.5±0.1	99.9±0.1
Cosmic Track Finder (CosmicTF)	99.3±0.1	99.7±0.1

Performance of the ATLAS TRT

Tracking Detectors

CMS Track Parameter Resolution

- Tracks split at point of closest approach
- Legs are fit separately and track parameters are compared
- Resolution from residuals, defined as δx = $x_1^{} x_2^{}$ / $\sqrt{2}$
- CKF, $p_T > 4GeV$, $\chi^2/ndf < 10$, $N_{BPIX} > 5$, $N_{double-sided} > 1$
- Aligned tracks are used, with Alignment Position Errors tuned to give Gaussian residual distributions

Track par.	σ	
р _т	96MeV	
d _{xy}	29µm	
d _z	53µm	
φ	0.21mrad	
θ	0.63mrad	

Main problems in 2008:

- $-C_6F_{14}$ cooling system was (very) leaky \rightarrow major refurbishment: leak search, replacement of poor quality pipes, valves & manifolds etc.
- FPIX: 1 high voltage short (cracked insulation) & 1 low voltage short (bad contact) FPIX has been extracted and repaired; $94\% \rightarrow 99\%$ working channels
- Commissioning has started several weeks ago
- Cooling temperature of +4°C for 2009/2010 running established
- Number of working channels:
 - Pixel detector: BPIX 99%, FPIX > 97.5%
 - Strips: similar to or better than 2008, except TIB: one TIB cooling loop disconnected due to leak \rightarrow 45 modules lost
- CRAFT 09 starts mid July

Status of the ATLAS Tracker

Main problems in 2008:

- − Cooling system: 3 out of 6 compressors failed, 100kg C_3F_8 lost → repeared and operational since August 2008
- Optical link: off-detector transeiver modules (TX) suffered from ESD during production, high failure rate \rightarrow replacement from new production batch possible

Number of working channels:

- SCT: "The expectation for 2009 is that 99% of all 4088 modules will be working."
- TRT: "as 2008" = 98%
- Pixel detector: "expect 98.5% operational"
- Commissioning and cosmic data taking is ongoing

Summary

- The ATLAS & CMS trackers are complex instruments, designed to measure the particle trajectories with high precision in a challenging environment
- The performance with cosmics is being studied and preliminary results are promising
- Both trackers are on-track for running with beam in autumn 2009

Back-up

CMS Tracker Material Budget (X₀)

Atlas Tracker Material Budget (X₀)

