PRE-PRE-RELEASE 9 TRACKING PERFORMANCES

Giulia Casarosa

Tracking Meeting ~ June 9th 2017

Integrated Efficiencies

- → Analysed 2kY(4S) events: common EvtGen generation, different simulation & reconstruction
 - the sector maps used in the reconstruction are trained without PXD Data Reduction
 - only the pion mass hypothesis has been used here

this is the one shown in the plots

	VXDTF	tracking efficiency	efficiency factoring out geom. accept.	VXDTF efficiency
no bkg & no PXD Data Reduction simulation	VXDTF1	85.1 ± 0.2	93.5 ± 0.2	87.3 ± 0.2
	VXDTF2	86.9 ± 0.2	95.5 ± 0.1	88.5 ± 0.2
std bkg & PXD Data Reduction simulation	VXDTF1	81.9 ± 0.3	91.4 ± 0.2	84.7 ± 0.2
	VXDTF2	84.8 ± 0.2	94.6 ± 0.2	86.7 ± 0.2
std bkg + QED & PXD Data Reduction simulation	VXDTF1	70.6 ± 0.3	78.8 ± 0.3	73.9 ± 0.3
	VXDTF2	job crashed: memory limit reached on batch queue ℓ		

VXDTF1

VS

no background & no PXD Data Reduction simulation

VXDTF2

Efficiency vs Track Direction

no bkg & no PXD Data Reduction simulation

→ VXDTF2 improves in the forward and backward regions

Efficiency vs pt

no bkg & no PXD Data Reduction simulation

- \rightarrow VXDTF2 improves the performances especially at low p_T, below 200 MeV/c.
- → VXDTF2 increases significantly the fraction of tracks with associated PXD hits. Very important for physics!!

Innermost Hit Map

no bkg & no PXD Data Reduction simulation

- → Structures outside PXD disappears with VXDTF2
- \rightarrow The region inside PXD is more populated with VXDTF2

⇒ Strange structure around $p_T = 300 \text{ MeV/c}$, more evident with $\bigvee XDTF1$, due to Tracks without PXDHit attached → may it be an effect of the different sector maps used for tracks with different momenta?

→ No structure for the longitudinal impact parameter

→ Pulls distribution are very similar between VXDTF1 and VXDTF2

→ Pulls distribution are very similar between VXDTF1 and VXDTF2

Impact Parameter Errors

no bkg & no PXD Data Reduction simulation

→ Average estimated error on the impact parameters is ~10% smaller for VXDTF2 and the distribution has a slightly smaller RMS

VXDTF1

vs

VXDTF2

standard background (no QED) & PXD Data Reduction simulation

Efficiency vs Track Direction

std bkg & PXD
Data Reduction
simulation

→ VXDTF2 improves in the forward and backward regions

- \rightarrow VXDTF2 improves the performances especially at low p_T, below 200 MeV/c.
- → VXDTF2 increases significantly the fraction of tracks with associated PXD hits. Very important for physics!!

do Resolution vs pt

⇒ Strange structure around $p_T = 300 \text{ MeV/c}$, is more evident with background for VXDTF1, it's more ore less the same for VXDTF2 (→ stronger against background)

no background no PXD Data Reduction simulation

VXDTF1

standard background (no QED)

PXD Data Reduction simulation

standard background + QED PXD Data Reduction simulation

Efficiency vs Track Direction

➡ Evident reduction of efficiency as machine background increases, specially with QED background

Efficiency vs pt

- → Almost no PXD Hits associated to Tracks when including QED background!!
 - * this was not the case with release-00-08-00, the average was 55%

Impact Parameters Residuals

Impact Parameters Pulls

→ The pulls look fine, even with QED background.

release-00-08-00 vs pre-pre-release 9

std bkg + QED & PXD Data Reduction simulation

Conclusions

- → VXDTF2 performances is better than VXDTF1, do we really want the default of release-00-09-00 VXDTF1?
 - from the performances point of view VXDTF2 wins
 - from other points of view, i.e. memory consumption, VXDTF1 is more reliable
- Bump at p_T around 300 MeV/c in the d₀ resolution
- → Issue with QED background (in the large time window), not present in release-00-08-00
 - tracking efficiency is degraded (10%)
 - fraction of tracks with attached PXD hits is < 10%
 - resolution is degraded (~ twice worse)

Integrated Efficiencies, release-00-08-00

- → The tracking performance of release-00-08-00 is compatible with the one of the previous release
 - only the pion mass hypothesis has been used here although all 5 mass hypotheses are available (only if the track fit has succeeded)

	with ROIs	tracking efficiency	efficiency factoring out geom. accept.	V0 efficiency
no bkg	no	85.3 ± 0.2	93.9 ± 0.2	64 ± 2
	yes	83.9 ± 0.2	93.3 ± 0.2	63 ± 2
std bkg	no	81.7 ± 0.3	89.8 ± 0.2	53 ± 2
	yes	82.3 ± 0.3	92.3 ± 0.2	57 ± 2
std bkg + QED reduced	no	×	×	×
	yes	80.3 ± 0.3	90.1 ± 0.2	55 ± 2
std bkg + QED	no	×	×	×
	yes	77.8 ± 0.3	87.3 ± 0.2	51 ± 2