Korrelation zwischen Clusterdefekten und Sperrstrom in Siliziumdetektoren

D. Eckstein¹ E. Fretwurst¹ <u>A. Junkes</u>¹ I. Pintilie^{1,2}

¹Institut für Experimentalphysik - Detektorlabor Universität Hamburg

> ²NIMP Bucharest-Magurele

DPG-Frühjahrstagung, München 2009

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
●○○	00	000	o
Motivation			

LHC-Ausbau

LHC	sLHC
$L = 10^{34} cm^{-1} s^{-1}$	$L = 10^{35} cm^{-1} s^{-1}$
10 Jahre 500 <i>fb</i> ⁻¹	5 Jahre 2500 <i>fb</i> ⁻¹
\Downarrow	\Downarrow
$\Phi(r = 4cm)$	$\Phi(r = 4cm)$
$\approx 3\times 10^{15} \text{cm}^{-2}$	$\approx 1,6\times 10^{16} \text{cm}^{-2}$

Large Hadron Collider (LHC)

Proton-Proton-Collider Luminosität: $10^{34} cm^{-1}s^{-1}$ Bunch crossing: 25 ns Ereignisrate: $10^9 s^{-1}$

Motiva	tion
000	

Auswirkungen hadronischer Strahlenschäden

Makroskopische Beobachtung

- Anstieg des Sperrstroms
- Anstieg der Verarmungsspannung
- Anstieg des Ladungsträger Trappings
- Inversion

Folgeprobleme

Abnahme des Signal- zu Rauschverhältnis (S/N)

Mikroskopische Beobachtung

Dominanz von Clusterdefekten "cluster related defects"

Fragestellung

Korrelation von mikroskopischen und makroskopischen Beobachtungen? z.B.: Korrelation Sperrstrom und Clusterdefekte ⇒ Annealing Experimente
 Motivation
 Messverfahren
 Ergebnisse
 Zusammenfassung

 oo
 oo
 oo
 oo
 oo

Strahlenschäden im Detektor

Punktdefekte & Cluster

Punktdefekte (Beispiele)

Leerstelle-Sauerstoffkomplex (VO_i) Doppel-Leerstelle (V_2)

Custerdefekte

- Zusammensetzung ungeklärt vermutlich Leerstellen (*V_n*)
- Messverfahren: DLTS/TSC

Vorraussetzungen

- Einfangs- und Emissionswahrscheinlichkeit beschrieben von Shokley-Read-Hall Statistik
- Parameter $\sigma_{n,p}$ und E_a

Messung des Umladeverhaltens:

- Abhängig von der Temperatur
- Messung von Kapazitäts Transienten
- Bestimmung der Defektkonzentration aus Signalhöhe

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
	○●	000	o
$\Phi_{eq.} >$	$10^{12} \text{ cm}^{-2} \Rightarrow T$	hermally Stimulated	Current technique

Vorraussetzungen

- Einfangs- und Emissionswahrscheinlichkeit beschrieben von Shokley-Read-Hall Statistik
- Abhängig von σ_{n,p} und E_a

- Defekte bei tiefen T durch Ladungsträgerinjektion füllen
- Messung des Emissionsstroms als Funktion von T
- Integral über TSC-Strom gibt Defektkonzentration

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
	⊙●	000	o
$\Phi_{eq.} >$	$10^{12} \text{ cm}^{-2} \Rightarrow \text{T}$	hermally Stimulated	Current technique

Anmerkung

- Nur elektrisch aktive Defekte messbar
- Nicht alle Defekte verursachen Anstieg des Sperrstroms
- Zuordnung durch annealing Experimente

- Defekte bei tiefen T durch Ladungsträgerinjektion füllen
- Messung des Emissionsstroms als Funktion von T
- Integral über TSC-Strom gibt Defektkonzentration

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
000	oo	●oo	o
Korrelation voi	n Cluster- und St	romausheilung	

DLTS-Studie an MCz, $\Phi_{eq.} = 3 \times 10^{11} n/cm^2$

Korrelation nicht notwengigerweise linear!

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
000	oo	o●o	o
Bistabilität vor	E4 <i>a</i> und E4b		

Bistabil heißt die Defektkonfiguration wechselt

- E4a/E4b nach 120 Minuten bei 80°C elektrisch inaktiv
- Rückgewinnung möglich durch hohen Durchlassstrom

Annealing Verfahren

- Isochronales Annealing
- Injektion von 1 A Durchlassstrom
- Isothermales Annealing

Motivation	Messverf 00	ahren	Ergebnisse oo●	Zusammenfassung o
- · · ·				

Direkte Korrelation sichtbar durch Bistabilität

'Ein-' und 'Ausschalten' von E4a/E4b und I_{dep}

Bistabilität unabhängig von Sauerstoffgehalt im Material oder Art der Bestrahlung

Spekulationen

Mögliches 'defect engineering'

- Einbringung von passivierenden Verunreinigungen
- Beispiel: Wasserstoff

Motivation	Messverfahren	Ergebnisse	Zusammenfassung
000	oo	ooo	

Zusammenfassung

- Clusterdefekte und Sperrstrom sind korreliert
- Bistabilität von E4a/E4b zeigt direkte Korrelation

Ausblick

- Untersuchungen zur Zusammensetzung der Cluster
- Identifizierung von E4a/E4b
- 'defect engineering' mit passivierenden Verunreinigungen

Ergebnisse

Zusammenfassung o

Annealing Experimente

Warum Temperung?

 Erwärmen beschleunigt die Ausheilung

- Zeitliche Defekteintwicklung
- Ermöglicht Messung von Langzeitszenarien in verkürzter Zeit

Möglichkeiten

- isothermale Ausheilung (*T* = const.)
 Zeitliche Entwicklung bei konstanter Temperatur
- isochronale Ausheilung (t = const.)
 Entwicklung der
 Temperaturabhängigkeit
 bei konstantem
 Zeitintervall