Separation von QCDund vollhadronischen SUSY-Ereignissen in Analysen für CMS

Christian Autermann, <u>Sergei Bobrovskyi</u>, Benedikt Mura, Christian Sander, Peter Schleper, Torben Schum *Universität Hamburg*

DPG Frühjahrstagung, 10. März 2009

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- I. Motivation
- 2. Helizitätsamplituden
- 3. Näherung für spezielle Helizitätsamplituden
- 4. Antennen Variablen
- 5. Anwendung: Unterdrückung des Untergrunds
- 6. Anwendung: Bestimmung des Untergrunds
- 7. Zusammenfassung und Ausblick

- Es ist äußerst wichtig, die QCD an einem Hadronen-Beschleuniger zu verstehen.
- QCD ist der dominierende Untergrund für die Suche nach den SUSY-Ereignissen im vollhadronischen Kanal.
- Es wurde versucht, neue Variablen zu konstruieren, um insbesondere die QCD Multijet Ereignisse beschreiben zu können. Die Form der Variablen ist motiviert durch die Kenntnisse über die QCD-Matrixelemente.

Einführung der Weyl-Spinoren

•Berechnung der Helizitätsamplituden

Alle Teilchen werden als ausgehend betrachtet

Speziellen Helizitätsamplituden

L. Dixon, Unveiling Amplitudes, Strings08

sergei.bobrovskyi@desy.de

DPG Frühjahrstagung, 10. März 2009

Näherung für <u>QCD</u> Matrixelemente auf Born-Niveau

Annahmen von SPHEL

- Konfigurationen mit spezieller Helizität sind typisch für alle anderen möglichen Konfigurationen. Nur diese werden explizit berechnet. Die Beiträge anderer nicht verschwindender Amplituden werden mit Hilfe eines kombinatorischen Faktors berücksichtigt.
- Nur Beiträge führender Farbordnung werden berücksichtigt.

<u>SPHEL im Falle reiner Gluonen-Streuung :</u>

 $\left|\bar{\mathcal{M}}\right|^2 \propto \sum_{1 \le i \le j \le k} (i \cdot j)^4 \sum_{P(2...k)} \frac{1}{(1 \cdot 2)(2 \cdot 3) \dots (k \cdot 1)} \qquad \begin{array}{c} \text{Notati}\\ k_i \equiv i \end{array}$ Notation:

Die vollständige SPHEL Näherung berücksichtigt Beiträge von Diagrammen mit bis zu zwei Quark-Paaren

Antennen-Struktur

Konstruktion von Observablen aus gemessenen Jets

rekonstruiert mit dem kt-Algorithmus

Näherung:

- Unterschiede zwischen rein gluonischen Ereignissen sowie Ereignissen mit Quarks werden vernachlässigt.
- Zur Berechnung werden gemessene Jet-Impulse verwendet.
- Die Impulse der ankommenden Partonen werden approximiert.

$$1^{m} \equiv k_{1} = \frac{\sqrt{s}}{2}(x_{1}, 0, 0, x_{1}) \qquad x_{1} = \frac{1}{\sqrt{s}} \sum_{i} m_{i}^{T}(e^{y_{i}})$$

$$2^{m} \equiv k_{2} = \frac{\sqrt{s}}{2}(x_{2}, 0, 0, -x_{2}) \qquad x_{2} = \frac{1}{\sqrt{s}} \sum_{i} m_{i}^{T}(e^{-y_{i}})$$

$$m_{i}^{T} = \sqrt{m_{i}^{2} + p_{i}^{T2}}$$

Hoffnung: Sensitivität der Variablen im Bezug auf QCD, entstehend durch unterschiedliche Ereignis-Topographien von QCD und SUSY

Antennen Variablen

• Einfaches Beispiel: nJet*-Antenne

- Untersucht werden nur Ereignisse mit genau n Jets (defininiert mit dem kt-Algorithmus R=0.4)
- Es werden alle Jets zur Berechnung der Variable verwendet

$$A_{n*} \propto \log_{10} \left(\sum_{1 \le i \le j \le (n+2)} (i^m \cdot j^m)^4 \sum_{P(2...n)} \frac{1}{(1^m \cdot 2^m)(2^m \cdot 3^m) \dots ((n+2)^m \cdot 1^m)} \times GeV^{2*(n-2)} \right)$$

Schwierigkeit: Nicht genügende Statistik in jeder einzelnen n-Jet Zelle

• Noch einfacher: 3jet-Antenne

- Untersucht werden alle Ereignisse mit mindestens 3 Jets
- Es werden nur die 3 führenden Jets zur Berechnung der Variable verwendet

$$A_3 \propto \log_{10} \left(\sum_{1 \le i \le j \le 5} (i^m \cdot j^m)^4 \sum_{P(2...5)} \frac{1}{(1^m \cdot 2^m)(2^m \cdot 3^m) \dots (5^m \cdot 1^m)} \times GeV^2 \right)$$

3 Jets reichen möglicherweise nicht aus, um die QCD-Multijet Ereignisse zu beschreiben

Antennen Variablen

• 3plus-Antenne

- Untersucht werden alle Ereignisse mit mindestens 3 Jets
- Es werden die 2 führenden Jets und die Vektorsumme aller anderen Jets im Ereignis zur Berechnung der Variable verwendet

$$A_{3plus} \propto \log_{10} \left(\sum_{1 \le i \le j \le 5} (i^m \cdot j^m)^4 \sum_{P(2...5)} \frac{1}{(1^m \cdot 2^m)(2^m \cdot 3^m) \dots (5^m \cdot 1^m)} \times GeV^2 \right)$$

$$3^m = \sum_{k_i=3}^n k_i, \quad \text{n-total number of jets}$$

• 6jet-Antenne

- Untersucht werden alle Ereignisse mit mindestens 6 Jets
- Es werden die 6 führende Jets zur Berechnung der Variable verwendet

$$A_6 \propto \log_{10} \left(\sum_{1 \le i \le j \le 8} (i^m \cdot j^m)^4 \sum_{P(2...n)} \frac{1}{(1^m \cdot 2^m)(2^m \cdot 3^m) \dots (8^m \cdot 1^m)} \times GeV^8 \right)$$

Antennen Variablen für QCD und SUSY(LMI)

UH

6jet-Antenne als Ereignis-Gestalt Variable (QCD)

Die Variablen sind abhängig von der Gestalt der Ereignisse, wobei diese sich im Allgemeinen von QCD zu SUSY unterscheidet.

Antennen Variablen zeigen keine Korrelationen zur Hauptrichtung (Thrust) und Sphärizität über weite Bereiche ihres Spektrums

- neue Ereignis-Gestalt Variablen

Signal : SUSY (LMI)

<u>Schnitte</u>:

- Veto auf Leptonen
- Mindestens 3 oder 6 Jets mit:
- I. Jet: Et > 200 GeV, |η| < 1.5
 2. Jet: Et > 150 GeV, |η| < 3.0
 3. Jet: Et > 20 GeV, |η| < 3.0

(6. Jet: Et > 20 GeV, $|\eta| < 3.0$)

• HT > 800

...

<u>Vergleichsvariablen</u>

$$S^* = \frac{S}{\sqrt{B}}; \quad A = \frac{S}{B}$$
$$S_a^* = S_{ant.cut}^*; \quad A_a = A_{ant.cut}$$
$$Q = \frac{S_a^*}{S^*}; \quad R = \frac{A_a}{A}$$

	A3	A3plus	A6
Schnitt bei:	-	-0.5	5
R	2.79	3.86	3.07
Q	0.65	0.86	I.28

Anwendung: Bestimmung des Untergrunds

Variablen:

•A6

•Fehlende transversale Energie (MET)

Korrelation mit MET

<u>Lösung:</u>

Verwendung von der erweiterten Abschätzungsmethode des Untergrunds, welche aus zwei Kontrollregionen eine Fit-Funktion in die Signalregion interpoliert.

Wahre QCD	Abgeschätzte QCD	Abweichung
152	147	-4%

sergei.bobrovskyi@desy.de

DPG Frühjahrstagung, 10. März 2009

- In diesem Ansatz wird versucht, neue Variablen zu konstruieren, welche auf den Kenntnissen der QCD Prozesse basieren.
- Die Konstruktion solcher Variablen ist möglich, und sie zeigen Unterschiede zwischen QCD-Multijet- und SUSY-Ereignissen auf.
- Die Variablen sind verbunden mit der Gestalt der Ereignisse.
- Detaillierte Untersuchungen der Abhängigkeit der Variablen von verschiedenen MonteCarlo Generationsmethoden und der Korrelationen mit anderen kinematischen Variablen werden durchgeführt.
- Es ist möglich, die Variablen in der datengestützten Abschätzung des QCD-Untergrunds zu verwenden, wobei sie die Interpolation des Untergrunds ermöglichen.