Alignment des CMS-Spurdetektors mit Myonen aus der kosmischen Höhenstrahlung

Jula Draeger, Gero Flucke und Peter Schleper Institut für Experimentalphysik, Universität Hamburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- CMS Siliziumspurdetektor
- Spurbasiertes Alignment mit dem Millepede II Algorithmus
- Sensitivitätsstudien mit Spuren aus simulierten Ereignissen der kosmischen Höhenstrahlung
- Datenbasiertes Alignment des CMS Detektors
- Ausblick und Zusammenfassung

- Länge 5.40 m, Durchmesser 1,10 m
- 15148 Siliziumstreifenmodule: $\sigma = 23 60 \mu m (r\phi)$
- 1440 Siliziumpixelmodule: $\sigma = 9 23 \mu m$ (r und z)
- 1d-Module: sensitive Koordinate in rφ
- 2d-Module: rφ-Modul + stereo-Module rotiert um 100mrad

Notwendigkeit eines Spurbasierten Alignments

Spurdetektorhierarchie mit verschiedenen Einbaugenauigkeiten

* C.Saout, A.Scheurer, F.-P.Schilling und A.Schmidt

- Einbaugenauigkeit und Surveymessungen erlauben Positionsbestimmung im Bereich 0(100µm)
- Für Physikanalysen notwendige Genauigkeit O(10µm), starker Einfluss des Misalignments z.B. auf b- tagging

UН

Prinzip des spurbasierten Alignments

UH

畄

Alignment mit dem MillePede II Algorithmus

$$\chi^{2}(\tau, \boldsymbol{p}) = \sum_{j=1}^{N^{tracks}} \left(\sum_{i=1}^{N^{tracks}} \frac{m_{ij} - f_{j}(\tau_{j}, \boldsymbol{p})}{\sigma_{ij}} \right)^{2}$$

 $\begin{array}{l} m_{_{ij}} = \text{gemessene Hitposition} \\ f_{_j} = \text{Funktion der Trajektorie j} \\ \tau_{_j} = \text{Spurparameter} \\ p = \text{bis zu 6 Starrkoerperparameter} \\ \sigma_{_{ij}} = \text{Fehler aus Hit und Spurvorhersage} \end{array}$

- Globaler Ansatz zur χ²-Minimierung unter Berücksichtigung der auftretenden Korrelationen
- Unterscheidung zwischen globalen und lokalen Parametern (n_{lokal} >>n_{global})
- p = 6 globale Alignmentparameter (3 Translationen u,v,w und 3 Rotationen α,β und γ)
- τ_j lokale Parameter der j-ten
 Spur

- Alignment mit simulierten Ereignissen, ausgehend von erwartetem Misalignment zu Beginn der Datennahme
- Aligniert werden
 - 1.Schritt: Barrel und Endkappen auf höchster Hierarchieebene (HalfBarrels)
 - 2.Schritt: Barrel und Endkappen auf Modulebene, Ausnahme Pixelendkappen (Petal-Ebene), die Gesamtheit der Alignmentparameter im TOB wird festgehalten
 - Translationen u und w (1d-Module)
 - Translationen u,v und w (2d-Modulen)
 - γ -Rotation, α , β nur im TIB

- 2 Mio. Spuren (mit Magnetfeld), analog zur Anzahl der Spuren in Daten
- Min. 10 hits pro Spur, 2 hits auf 2d-Modulen, Impuls p>5GeV
- Vergleich ideale Geometrie, Startgeometrie (erwartetes Misalignment) und Millepede II Alignment-Geometrie

Spurbasierte Alignmentvalidierung

- χ²-Minimierung liefert annähernd
 Verteilung wie mit idealer Geometrie
- Residuen in x in TOB und TEC annähernd zur idealen Geometrie
- TOB: rms=75µm(IDEAL)/90µm(MP)
- TEC: rms=79µm(IDEAL)/99µm(MP)

Verteilung der Residuenmittelwerte auf Modulebene

۲

۲

Distribution of the Mean of the Residuals for TIB

Zentralbereich zeigt nahezu Übereinstimmung der Verteilung für ideale und alignierte Geometrie Endkappen zeigen noch Unterschiede (Statistik in Endkappen deutlich geringer) \rightarrow eventuell großzügigere Spurauswahl in den Endkappen

Systematische Verzerrung

- Geometrievergleich: Modulpositionen im Vergleich zu idealer Geometrie
- Hinweis auf χ²-invariante
 Verzerrung
- Kaum Einfluss durch Veränderungen der Spurselektion
- Starke Abhängigkeit der Anfangsgeometrie, bei gleiche χ^2 -Verteilung und Residuen

UHH

茁

Systematische Verzerrung

50

0

-50

-100

-100

-50

0

50

100

x [cm]

Jula Draeger DPG Frühjahrstagung München 2009

-100

-50

0

50

100

0

0

0

0

Alignment mit Daten aus der kosmischen Höhenstrahlung

- Ausgehend von der CMS-Design Geometrie
- ca. 2 Mio Spuren, äquivalente Konfiguration wie bei Simulierten Ereignissen:
 - 6 Freiheitsgrade der höchsten Hierarchiestrukturen
 - Gesamtheit der TOB-Module als Referenz festgehalten
 - u,w (und v) Translationen f
 ür die 1d(2d)-Module u,w (und v) Translationen f
 ür die 1d(2d)-Module
 - γ -Rotation, α , β im TIB
 - TPE Alignment auf Petal Niveau (aufgrund mangelnder Statistik)
- Signifikante Verbesserung in χ² und x-Residuen

UHH

띔

- Analyse mit simulierten Ereignissen zeigt:
 - Keine statistische Limitierung im Zentralbereich, leichte Einschränkungen in den Endkappen
 - c2-invariante systematische Verzerrungen, abhängig von Spurauswahl und von Startgeometrie
- Analyse mit Daten:
 - χ2-Verteilungen zeigen deutliche Verbesserung gegenüber der Startgeometrie, aber längere Ausläufer als in simulierten Daten
 - deutliche Verbesserung der Residuen und Verteilungen der Mittelwerte der Residuen
- Nächste Schritte:
 - Kombination mit 0T Spuren
 - Untersuchung der χ2-invarianten Verzerrungen