Teststrahlmessungen mit dem EUDET Pixelteleskop

Jörg Behr

für das EUDET-Konsortium

DPG Frühjahrstagung München

März 2009

- Was ist EUDET?
- 2 Experimenteller Aufbau
- 3 Datennahmesoftware
- 4 Ergebnisse von Teststrahlmessungen
- 5 Zusammenfassung

Einleitung

EUDET

- Verbesserung der Infrastruktur für Detektorentwicklung (Unterstützung für den ILC)
 - → Vertex-Detektoren
 - → Gas- und Silizium-Spurdetektoren
 - \rightarrow elektromagnetische und hadronische Kalorimeter
- Förderung durch das 6. Rahmenprogramm der EU

Verbesserung der Teststrahl-Infrastruktur innerhalb von EUDET:

- 1 Tesla Magnet (PCMAG)
- 2 hochauflösendes Pixelteleskop

Erste Phase:

• "Demonstrator"-Teleskop, einfache Siliziumsensoren analog ausgelesen

Zweite Phase:

- mehr Datenverarbeitung auf den Sensoren (Nullpunktsunterdrückung), digitale Auslese
- verfügbar Spätsommer 2009

Experimenteller Aufbau

Einige Wichtige Hardware Komponenten

Sensoren:

- MAPS ("Monolithic Active Pixel Sensor")
- MimoTEL
 - 65536 Pixel
 - Abstand: $30 \ \mu m$
 - Größe: $7.7 \otimes 7.7 \; \mathrm{mm}^2$
 - Rauschen: 15 e⁻ (bei Raumtemperatur)
 - S/N > 22
 - intrinsische Auflösung: $3.0 \ \mu m$

Mimosa18

- $512 \otimes 512$ Pixel
- Abstand: $10 \ \mu m$
- Größe: $5 \otimes 5 \text{ mm}^2$
- Rauschen: 9.9 e⁻ (bei Raumtemperatur)
- $S/N \approx 27$
- intrinsische Auflösung: $1.0 \ \mu m$

"EUDRB":

- Datenerfassung
- Anschlüsse: VME64x, USB 2.0 und Trigger
- 2 Modi:
 - 1 "RAW"
 - 2 "ZS" (Nullpunktunterdrückung)

"TLU":

- Triggerlogik
- einfache Steuerung über Computer
- Koinzidenz von Szintillatorsignalen
- generiert Ereignisnummern und Zeitmarkierungen
- kann mit fester Frequenz Triggersignale generieren (zum Testen)

Datennahmesoftware ("EUDAQ") (1/2)

- Die Datennahmesoftware ist eine eigene Implementation in objektorientiertem C++
- verteilter Betrieb über Netzwerk
- Benutzer können ihre Detektoren mit der Software auslesen
 - → erfolgreich getestet mit DEPFET-Kollaboration
- modularer Aufbau:
 - → "Run-Control"
 - → "Log-Collector"
 - → "Data-Collector"
 - → diverse Prozesse, die die Hardware auslesen
 - → Online-Überwachung der Datenqualität

Datennahmesoftware ("EUDAQ") (2/2)

Online-Überwachung der Datenqualität (Online-Monitoring):

- Rauschen, Rekonstruktion von Clustern, ...
- (Dekodierung von DEPFET-Sensoren)
- Korrelationen zwischen den Sensorebenen (z.B.):
 - Cluster Position
 - Anzahl der Cluster
 - ⇒ Erleichtert Ausrichtung im Strahl

Teststrahlmessungen

- Im Sommer/Herbst 2007 wurde das "Demonstrator"-Teleskop am DESY and am CERN in Betrieb genommen und getestet
- Die Integration von Benutzern wurde erfolgreich getestet und durchgeführt

- Dezember 2007 und im Sommer 2008 haben verschiedene Benutzer das Teleskop am CERN und am DESY verwendet:
 - → **DESY:** BeamCal, EUDET
 - \rightarrow **CERN PS:** CALICE, DEPFET
 - → CERN SPS: DEPFET, EUDET, SiLC, MimoRoma, ISIS

→ Sommer 2008 war die Kampagne von Teststrahlmessungen länger als 13 Wochen! ⇒ mehr als 10 Millionen gemessene Ereignisse

Leistung der Sensoren (6 GeV Elektronen)

Sensor		Keimpixel	$3 \otimes 3$ Cluster	$3 \otimes 3$ Cluster
		S/N (MPV)	S/N (MPV)	Rauschen [ADC]
0	MimoTEL	16.14 ± 0.01	11.57 ± 0.02	9.5
1	MimoTEL	14.73 ± 0.01	11.75 ± 0.01	9.7
2	MimoTEL	16.43 ± 0.01	13.15 ± 0.01	8.7
3	Mimosa18	21.48 ± 0.01	14.96 ± 0.01	7.1
4	MimoTEL	13.09 ± 0.01	11.69 ± 0.01	10.1
5	MimoTEL	11.62 ± 0.01	9.683 ± 0.004	11.9

- Sensortemperatur $T \approx 20$ Grad C

- Die "Alignment"-Prozedur basiert auf MILLEPEDE II und nutzt volle Spuren
- typische Werte der "Alignment"-Konstanten sind:
 - Verschiebungen in X- und Y-Richtung: einige 100 μm
 - Rotationen um die Strahlrichtung: einige mrad
- ightarrow "Alignment" Präzision besser als $0.05~\mu m$
- → neue Entwicklung: Benutzer können ihren Detektor zusammen mit dem Teleskop alignieren!

Auflösung mit Hadronen

• bei hochenergetischen Hadronen kann die Vielfachstreuung vernachlässigt werden

$$\rightarrow \sigma^2 = \sigma_{\rm MO}^2 + \sigma_{\rm TEL}^2 + \sigma_{\rm VS}^2$$

- \Rightarrow geradlinige Spuren lassen sich anpassen
- Messobjekt-Modus:
 - → mittlerer Sensor wird bei der Spuranpassung nicht berücksichtigt ⇒ Auflösung lässt sich mit Hilfe der Residuen bestimmen

Auflösung mit Elektronen

 Vielfachstreuung der Elektronen wird bei der Spuranpassung berücksichtigt:

$$\rightarrow \Delta \chi^2 = \underbrace{\left(\frac{y_i - p_i}{\sigma_i}\right)^2}_{\text{Ortsmessung}} + \underbrace{\left(\frac{\theta_i - \theta_{i-1}}{\Delta \theta_i}\right)^2}_{\text{Vielfachstreuung}}$$

- \Rightarrow Verbesserung der χ^2 -Verteilung
- \Rightarrow gute Übereinstimmung mit der Simulation

- Das "Demonstrator"-Teleskop wurde erfolgreich während der Teststrahlmessungen im Jahre 2007 getestet und wird seitdem intensiv von Benutzern verwendet
- Die bisherigen Ergebnisse entsprechen der Erwartung.
- Verschiedene Benutzer wurden erfolgreich integriert.
- Das endgültige Teleskop soll im Spätsommer 2009 zur Verfügung stehen.

Das Teleskop kann jeder verwenden!

→ Weitere Informationen: http://www.eudet.org/

Backup - "MAPS"

- "MAPS" basieren auf CMOS-Technologie
- auf dem gleichen Siliziumsubstrat befindet sich das Detektionselement und die Ausleseelektronik
- p-dotierte epitaktische Schicht als empfindliches Medium (Dicke $< 20 \ \mu m$, Füllfaktor $\approx 100\%$)
- Muster von n-dotierten "Wells" (Photodioden)
- epitaktische Schicht ist nicht verarmt \rightarrow thermische Diffusion
- Sensoren wurden optimiert um bei Raumtemperatur nur einen kleinen Dunkelstrom aufzuweisen
- Verdünnung auf $50 120 \ \mu m$ wurde erreicht

