Verwendung der Daten des Laser Alignment Systems für das spurbasierte Alignment des CMS-Spurdetektors

Gero Flucke, <u>Kolja Kaschube</u>, Peter Schleper Universität Hamburg, Institut für Experimentalphysik

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

DPG-Tagung München, 11. März 2009

- Der CMS-Spurdetektor
- Laser Alignment System
- Spurbasiertes Alignment
- Verwendung der LAS-Daten
- Ausblick

DER CMS SPURDETEKTOR

<u>Aufbau</u> Silizium-Spurdetektor ~ 200 m² aktive Fläche 16.584 Si-Module

Radius: 110 cm Länge: 540 cm

2-D Messungen in Pixel- und "Double-sided"-Sensoren

Pixeldetektor

Barrel (PB), Endcaps (PE), 1440 Module, 9 – 23 μm Hit-Auflösung in rφ

Längsschnitt des Spurdeterktors (Quadrant)

Silizium-Streifendetektor Inner/Outer Barrel (TIB/TOB),

Inner Disks (TID), Endcaps (TEC), 15144 Module,

23 – 60 µm Hit-Auflösung in rø

LASER ALIGNMENT SYSTEM

40 fest installierte Infrarot-Laserstrahlen, die...

- senkrecht auf 434 Silizium-Streifen-Module gerichtet sind
- Positionsmessungen im Bereich < 100 µm (nur sensitive Koordinate!) machen

- •Strahlen werden über Beam Splitter (BS) parallel zur z-Achse ausgerichtet
- •Getroffene Sensoren haben für die Strahlen durchlässige Punkte (r = 0.5 cm)
- •Laserstrahlen werden von den Sensoren vermessen!
- •Barrel: Metallröhren (AT) mit halbdurchlässigen Spiegeln leiten Strahlen auf Sensoren

Bestimmung der räumlichen Ausrichtung (*Alignment*) der Sensoren mit Hilfe von Teilchenspuren

Spurrekonstruktion schlecht, wenn Ausrichtung der Sensoren unbekannt \rightarrow hohe χ^2 -Werte der Spur-Fits

Alignment:

neue Minimierung des $\chi^{\rm 2}$ unter Veränderung der Position der Sensoren

Gutes Alignment: unterschiedliche Teilchenspuren benötigt

- Detektorteile durch Spuren "miteinander verbunden"
- Spuren werden von den Alignment-Algorithmen zusammen verwendet

kosmische Myonen

Spuren aus Kollisionen

Nutzen des LAS für spurbasiertes Alignment

- misst relative Positionen der Disks in den Endkappen
- misst globale Bewegungen zwischen Inner/Outer Barrel und den Endkappen
- \rightarrow wenige Teilchenspuren haben diese Eigenschaft!

SPUR-FIT

Alignment-Algorithmen

benötigen Hit- und Spurinformationen von jedem getroffenen Sensor

LAS Messungen

rφ-Wert des Hits; keine Messung in r, z (r ist fester Parameter)

Annahme: Die LAS-Strahlen sind gerade \rightarrow **2-D Spurfit zur Parametrisierung**

Beam Splitter

- noch nicht berücksichtigt
- bewirken Spurknick
- Parametrisierung: freier Parameter im Fit, oder fester gemessener Wert

Spur-Fit für die Endkappen

- jede Endkappe: 16 Strahlen, 144 Module
- Endkappen unabhängig voneinander (keine Spur verbindet sie)

Idealisierter Fall

- alle Hits in Sensormitte, pessimistische Fehlerannahme (100 µm)
- Misalignment nur in LAS-sensitiven Koordinaten

Verschiebung der Disks in den Endkappen

Gaußisch verteilt: x: 100 μm, y: 100 μm, φ: 100 μrad

Keine Sensitivität auf globale Bewegungen der Endkappen

6 Constraints:

- Bewegungen der Endkappen als Ganzes werden eingeschränkt
- Verschiebung in x, y; Rotation um z (φ); Rotation um x, y (Scherung); linear von z Abhängige Verdrehung der Scheiben (*twist*)

TECminus: $\Delta \phi$ vs. z

Globale Position der Disks: vorher \rightarrow nachher

linearer Fit an die Position der Disks

- Steigung (twist), Achsenabschnitt (glob. Rotation) bleiben gleich
- \rightarrow Disks werden bis auf globale Rotation perfekt aneinander gereiht
- \rightarrow erwartetes Ergebnis!

TECminus: Δx vs. z

linearer Fit an die Position der Disks

- Steigung (twist), Achsenabschnitt (glob. Rotation) bleiben gleich
- \rightarrow Disks werden bis auf globale Rotation perfekt aneinander gereiht
- \rightarrow erwartetes Ergebnis!
- \rightarrow analog für TECplus, Δv

ALIGNMENT MIT LAS-DATEN

Gaußisch verteilte Hits: 5 mal gewürfelt (mean 0, σ = 100 µm)

TECplus: Δφ vs. z

Ein Spur-Fit für die Verwendung der LAS-Daten für das spurbasierte Alignment in den Endkappen ist im Software-Framework implementiert.

Das eigenständige Alignment der Disks in den Endkappen mit verläuft erwartungsgemäß.

<u>Ausblick</u>

- Einbeziehung der Beam Splitter
- Impementierung des Fits für den Barrel-Bereich
- Benutzung von wahren LAS-Daten (auch Monte Carlo)

Large Hadron Collider

LHC UND CMS

- Ringbeschleuniger am CERN mit Umfang 26.7 km
- Proton-Proton-Kollisionen bei bis zu 14 TeV

Allgemeiner Hochenergiephysik-Detektor

- Komponenten: Spurdetektor, ECAL, HCAL, Solenoid (3.8 T), Myonkammern
- Dimensionen: 15 m Durchmesser, 20 m Länge; Gewicht: 12500 Tonnen

