

Temperature and Frequency Dependence of Electrical Parameters of Irradiated Silicon Diodes

V. Khomenkov, D. Eckstein, E. Fretwurst

Institute for Experimental Physics, Hamburg University

DPG München March 9-13, 2009

Outline:

- Main detector parameters
- Radiation damage
- Devices under test
- Scaling with temperature:
 - Leakage current
 - Frequency at CV measurement
- Charge collection and its correlation with CV measurement
- Conclusions

Main detector parameters

Fast hadrons (MIP):

 $dE/dx \approx 80 \text{ e-h/}\mu\text{m}$ Charge $\propto d \propto \sqrt{V_{bias}} \propto 1/C$ S/N $\propto 1/I_{leak}$

<u>Main parameters</u> – <u>measurement technique:</u>

- Full depletion voltage CV
- Leakage current IV
- Collected charge CCE with MIPs

Radiation damage in silicon

CMS Tracker – Silicon sensors:

- 17 thousand strip modules
- 45 million pixels

Total fluence for innermost layers:

- LHC **3.10¹⁵ cm⁻²** during 10 years
- Super-LHC **1.6-10¹⁶ cm⁻²** during 5 years

Extremely high radiation damage expected!

Fast hadrons - point defects and clusters:

- Depletion voltage increase
- Leakage current increase
- Signal charge trapping

Cooling is needed to decrease leakage current → proper temperature scaling required

Туре	Thickness [µm]	Resistivity [kΩ·cm]	Fluence [10 ¹⁴ cm ⁻²] 24 GeV/c protons reactor neutrons		
n-MCz	280	1	2-9	2-10	
p-MCz	280	3	2-9	-	
n-Epi-DO	100	0.3	-	1-40	

CV/IV: at (20, 10, 0, -10)°C;

CV:	t [ºC]	f [kHz]		
	20	1-100		
	10	0.3-30		
	0	0.3-30		
	-10	0.1-10		

- **Epi-DO:** isothermal annealing at 80°C up to 30 min
- **MCz:** CCE with Sr-90 β-particles

IV scaling: leakage current components

Generally used:

$$I(T) \propto T^2 \exp\left(-\frac{E_a}{kT}\right), \quad E \approx E_g/2$$

- Ratio /(20°C)//(-10°C):
 16 (expected)
 6 (observed at 500V)
 strong increase after full deplotion
- strong increase after full depletion "soft breakdown"?

Tail subtraction:

 $I(V > V_{\rm fd}) = I_{\rm sat} + A \cdot [\exp(V/V_0) - 1],$

 I_{sat} – saturated leakage current, A and V_0 – tail fitting parameters

IV scaling: MCz material

• Good agreement for α at 20°C: (4.8–5.1)·10⁻¹⁷ A/cm

Sample/	(E_{a}			
	20°C	10°C	0°C	-10°C	[ev]
p-MCz/protons	5.04	2.10	0.83	0.30	0.598
n-MCz/protons	4.84	2.00	0.76	0.28	0.609
n-MCz/neutrons	5.05	2.38	1.05	0.39	0.558

CV scaling: approach

$$\mathbf{V} = \mathbf{V}_{\text{bias}} + \mathbf{V}_{\text{m}} e^{i\omega t}$$

Defect response should depend not only on temperature, but also on frequency

Petterson et al. (NIM A583):

$$f(T) \propto e_n(T) \propto T^2 \exp\left(-\frac{E_a}{kT}\right)$$

CV scaling: MCz material

$$R\left(\frac{1}{T}\right) = \ln\left(\frac{f_{293K}}{f_T} \cdot \left(\frac{T}{293}\right)^2\right) = \frac{qE_a}{k} \left(\frac{1}{T} - \frac{1}{293}\right)$$

- *E*_a depends on: material, irradiation, fluence
- Generally larger (~ 0.8eV) then for current scaling (~0.6eV)

CV scaling: Epi-DO 100µm

- $E_a(\Phi)$ is similar to MCz;
- E_a(t_{ann}) is different before (<10¹⁵cm⁻²) and after SCSI;
- Correlation with short-term annealing?

Charge collection with beta-particles

- 25 ns shaper;
- triggered by scintillator;
- cooling to -30°C

CCE degradation with fluence

<u>Correlation between Q(V) and 1/C(V)</u>

V. Khomenkov, D.Eckstein, E. Fretwurst

f2[kHz]

10

3.1

0.87

0.22

Conclusions:

Electrical parameters of silicon diodes based on different type materials (n-MCz, p-MCz and n-Epi) and irradiated with charged particles and neutrons were studied at different temperature and frequency values

They may be scaled with temperature using activation energy (E_a) concept

I(V) scales well with temperature if "soft breakdown" exponential tail is subtracted

For C(V) frequency scaling E_a values depend on material, irradiation type and fluence

Nevertheless, using proper E_a value Q(V) scales well with 1/C(V) measured at different temperature