GEFÖRDERT VOM

Untersuchung von Oberflächenschäden von Si-Sensoren durch Röntgenstrahlung

Eckhart Fretwurst, Friederike Januschek, Robert Klanner, Hanno Perrey, Joana Pintilie, Fabian Renn, Peter Schleper, <u>Thorben Theedt</u>

Inhalt

- Motivation
 - Anforderung an Strahlenhärte am XFEL
- Teststrukturen
 - 'Gate Controlled' Dioden
- Bestrahlung
 - Eigenschaften der verwendeten Strahlung
 - Experimenteller Aufbau
- Messmethoden
 - C/V, I/V und TSC Messungen
- Ergebnisse
- Ausheilung
- Zusammenfassung

Motivation

Hohe Anforderungen an Detektoren und Elektronik am XFEL

Röntgenlicht-freie-Elektronen-Laser, Inbetriebnahme geplant für 2013

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- Integrierte Photonenflüsse von $10^{16} \gamma/cm^2$ (12 keV Photonen)
- Dosis von 10⁹ Gy in SiO₂

Motivation

Hohe Anforderungen an Detektoren und Elektronik am XFEL

Röntgenlicht-freie-Elektronen-Laser, Inbetriebnahme geplant für 2013

- Spitzenbrillanz viele Größenordnungen über der bisheriger Röntgenquellen
- Integrierte Photonenflüsse von $10^{16} \gamma/cm^2$ (12 keV Photonen)
- Dosis von 10⁹ Gy in SiO₂

Erwartete Effekte auf Detektoren und Elektronik

- Oberflächenschädigungen, keine Volumenschäden (ab $E_{\gamma} \sim 300 \text{ keV}$)
- Ladungsansammlung im Oxid und am Si-SiO₂ Übergang
 - Verschiebung der Flachbandspannung
 - Aufbau hoher Feldstärken (Gefahr von Durchbrüchen)
- Schädigung am Si-SiO₂ Übergang führt zu Dunkelströmen
 - Verschlechterung des Signal/Rausch Verhältnisses
 - Entladung von Kapazitäten

Detektoren und Elektronik müssen auf Strahlenhärte getestet werden!

Teststruktur: 'Gate Controlled' Dioden

'Gate Controlled' Dioden

n-dotiertes Substrat, Dicke: 285 μm

Geringe Dotierung, hoher spezifischer Widerstand, $\rho \sim 3.4 \text{ k}\Omega \text{cm}$

- p⁺-dotierte Diode, Durchmesser: 1 mm (Durchmesser Struktur 1.5 mm)
- Oxidschicht (SiO₂-Si₃N₄), Dicke 380 nm
- Fünf Aluminium Gate Ringe

Teststruktur ermöglicht unterschiedliche Messverfahren (C/V, I/V)

Bestrahlung

Bestrahlung am Strahlrohr F4 am HASYLAB (DESY)

Strahleigenschaften

Synchrotronstrahlung mit einer typischen

Energie von E_{γ} ~10 keV (FWHM ~ 16 keV)

Strahlgröße: 5 x 2 mm²

Experimenteller Aufbau

- Chopper: Dosisrate von 0.5-150 kGy/s
- Kollimator: Bestrahlungsfläche einstellbar
- Probenhalterung: Wassergekühlt auf 20°C (Temperatur Teststruktur < 36°C)
- Aufbau mit Motor bewegbar, Probe lässt sich abscannen

C/V Messung

- Kapazität in Abhängigkeit der Spannung am Gate 2 und 3
- LCR-Meter misst Kapazität bei Frequenz f

Messung sensitiv auf: Oxid-Ladungsdichte (N_{ox}), Dichte der Interface-Energiezustände (D_{it})

I/V Messung

- Strom durch Diode als Funktion der Spannung am ersten Gate
- Konstante Bias-Spannung an Diode

Messung sensitiv auf Oberflächenstrom (Iox)

Messmethoden: TSC

TSC ('Thermal Stimulated Current'):

- Diode wird in Akkumulation auf 30°K gekühlt, Interface-Energiezustände (Traps) sind gefüllt
- Umschalten auf Verarmungsspannung
- Aufwärmen der Diode in Verarmung bei konstanter Heizrate
 - Abscannen der Bandlücke mit Ferminiveau
 - Ladungen 'springen' ins Leitungsband
 - Messe Strom als Funktion der Temperatur

Messung sensitiv auf Dichte der Interface-Zustände (D_{it}) und deren Lage in der Bandlücke

Ergebnisse: C/V Messung

- Kapazität als Fkt. der Gate-Spannung für verschiedene Dosen
- Durch Bestrahlung Verschiebung zu größeren, negativen Spannungen
- Für Dosen größer 5 MGy nimmt die Verschiebung wieder ab

- V_{FB} als Fkt. der Dosis
- Maximum bei ca. 5 MGy
- Abfall zu höheren Dosen
- Verhalten unabhängig von Dosisrate

Ergebnisse: I/V Messung

- I/V Messungen einer Diode nach verschieden Bestrahlungsschritten
- Anstieg des Oberflächenstroms durch Bestrahlung um mehrere Größenordnungen

- Stromdichte I_{ox}/A_{gate} als Fkt. der Dosis
- Starker Anstieg bis ca 5 MGy
- Danach Abnahme um Faktor 5
- Kurvenverlauf unabhängig von Dosisrate

Ergebnisse: TSC Messung

- TSC Signal als Fkt. der Temperatur für 1MGy Diode
- Umrechnung des Stroms in Dichte der Interface-Zustände
- Umrechnung der Temperatur in E_c-E_t (Position in Bandlücke)

- Mehrzahl der Interface-Zustände liegt nahe der Bandlückenmitte
- D_{it} nimmt mit steigender Dosis ab
- Konsistent mit Abnahme der Verschiebung von V_{FB} und Abnahme von I_{ox}

Ausheilungseffekte

5 MGy Diode kurz nach Bestrahlung
Stündliche C/V Messung über 24 h

V_{Gate}(C=20pF) als Fkt. der Zeit
 Vorschiebung geht mit Zeit zurüge

Verschiebung geht mit Zeit zurück

Ausheilungseffekte schon bei Raumtemperatur auf Zeitskala von Stunden erkennbar

Zusammenfassung

'Gate Controlled' Dioden wurden mit Dosen bis zu 1 GGy bestrahlt
Untersuchung mit C/V und I/V Messungen:

- Verschiebung der C/V Kurven und Oberflächenstrom I_{ox} haben ein Maximum bei ~ 5 MGy und nehmen zu höheren Dosen hin ab
- TSC Messungen:
 - Dichte der Interface-Energiezustande nimmt mit steigender Dosis ab
 - Konsistent mit Abnahme der Verschiebung von V_{FB} und Abnahme von I_{ox} bei Dosen > 5 MGy
- Ausheilungseffekte schon bei Raumtemperatur auf Zeitskala von Stunden erkennbar