

Two-dimensional Numerical Modelling of MOS Test-Structures

(Ajay K. Srivastava, E.Fretwurst, R.Klanner, H.Perrey)

Institute for Experimental Physics, University of Hamburg, Germany

DPG, Munich, 10 March 2009

Outline

- Introduction
- Experimental Measurements @UH
- Device Structure and Physical Models
- Simulation Procedure
- Simulation Work Done :

Comparison Data to Simulation

"Two-Dimensional Numerical Modelling of MOS Test-Structures for C-V and G-V Characterization of Gated Diode"

- Unirradiated
- Irradiated (0.5 MGy 10 MGy)

Introduction

Requirements XFEL :

Flux of 12 keV photons: $10^{16} \gamma$ /pixel \rightarrow 1 GGy [10⁹ J/kg]

Radiation damage and its impact on sensor performance:

 \rightarrow high field (breakdown regions) at critical corners

 \rightarrow dark current \rightarrow increases noise

Experimental measurements @UH

Circuit for I/V (I_{ox}) and C/V (V_{fb} , C_{ox} , C_{inv} , C_{fb}) measurement & --- Measurement for G/V (N_{it})/TSC (N_{it} , σ_{eff} , energy level) of gated diode

•Test structure: gated diode with 5 gate rings for surface damage

DPG, Munich, 10 March 2009

Ajay K. Srivastava Uni.- Hamburg

Device simulation

Aim: Detailed simulation of sensor including radiation damage effects (N_{ox}, N_{it})

Software: 2-D Device simulation with ISE T-CAD DESSIS version 2005.10 (Device Simulation for Smart Integrated Systems)

Device structure and physical models

MOS 50 \times 300 micron

Physics models used:

- SRH recombination
- Auger recombination
- Impact ionization
- Surface recombination
- •Gate current (Lucky) model
- Trap models
 - solving Poisson and electron/hole current-
 - continuity equations
 - > dependence of life time of charge carrier (z) on interface trap density (N_{it}) taken into account.

and doping dependent mobility and high field saturation model, band to band tunneling

AIM: Describe C/V and G/V characterstics vs. frequency

How Parameters used in the present work:

From measurement: N_{ox} (oxide trapped charge density), N_{it} (interface trap density), I_{ox} (surface generation current)

Optimize to describe data: E_t (trap energy), trap type

Input physical and geometrical parameters used for MOS teststructures AC simulation:

- Area of gate= 0.0404 mm² (taken from experimental measured gate diode)
- t_{ox} =400 nm (oxide thickness)

-N_D = 1.28 x 10¹² /cm³ (Doping concentration for n-type bulk Si)

-AC frequency : 10-800 kHz with 0.1 ac voltage

- σ_{eff} (n/p) =7 x10^-17 cm ^2 (effective capture cross-section for charge carriers)

Simulation procedure

 $mixed-mode \ simulations: \overset{\text{Device using dessis and}}{\underset{\text{Circuit (SPICE)}}{\text{SPICE}}}$

1. AC analysis: to obtain small signal admittance Y matrix - current response at a node to a small signal voltage at another node of the form:

 $i = \mathbf{Y} \times \mathbf{v} = \mathbf{A} \times \mathbf{v} + \mathbf{j} \mathbf{\omega} \mathbf{C} \times \mathbf{v}$

i = small signal current vector (at all nodes)

v = voltage vector

DESSIS output is conductance matrix and capacitance matrix.

-> Compare results to simple analytical calculations for cross-check

 $\rightarrow C_{p}, G_{p}$

4.00E-11

E

Capacitance

0

Comparison data to simulation : unirradiated gated diode vs. frequency

DPG, Munich, 10 March 2009

♦ G/V curve very sensitive to interface traps
 → from shape of curve → Acceptor traps

Good description of G/V curve in

- Accumulation
- Flatband
- \rightarrow In inversion region: disagreement

Simulation of irradiated device (C/V)

➡ Use measurements to estimate N_{ox} and N_{it} → Simulation agrees with data

Simulated frequency dependence of V_{fb}

Comparison of data to simulation: 0.5 MGy irradiated gated diode

Conclusion: irradiated

HELMHOLTZ

GEMEINSCHAFT

- V_{fb} increases up to 5 MGy then decreases (if measurement after irradiation)
- V_{fb} decreases with frequency for all doses
- Good description of C/V curve in accumulation and inversion
- Shape of curve not understood (uniformity of irradiation, properties of traps)
- G/V curve is problem.

DPG, Munich, 10 March 2009

Ajay K. Srivastava Uni.- Hamburg

Summary

•Simulation for C/V characteristics is in good agreement with experimental results for unirradiated and irradiated gated diode but for irradiated gate diode, difficulty to reproduce C/V curve!

 \cdot G/V characteristics is very sensitive to type of interface trap and interface trap density at different frequency for unirradiated and irradiated gate diode .

Status Report: Radiation Damage for X-rays in Si

A C

The change of $V_{\rm fb}$ is a direct measure for the concentration of ionization induced positive oxide charges N_{ox} trapped in the oxide,

The interface generation current is caused by generation of charge carriers in the interface,

HELMHOLTZ

where n_i is the intrinsic charge carrier concentration, A_{gate} the gate area and S_0 the interface recombination velocity. Assuming a homogeneous distribution of the interface states across the bandgap, S_0 is given as

> with $\sigma = \frac{1}{2} \sqrt{\sigma_n \sigma_p}$ being the effective capture crosssection for electrons and holes of the interface trapping centers, v_{th} the thermal velocity of the minority carriers, $k_{\rm B}$ the Boltzmann constant, T the absolute temperature and D_{it} the interface state density in cm⁻²eV⁻¹

$$\begin{array}{c} \hline \textbf{GEMEINSCHAFT} & \hline \textbf{Claude Helpert Haddeller Ballage for Araye in Claude Helpert for Araye in Claude He$$

$$I_{ox} = q_0 n_i S_0 A_{rate}$$

$$\rightarrow S_0 = \sigma v_{\rm th} \pi k_{\rm B} T D_{\rm it}$$

Status Report: Radiation Damage for X-rays in Si

 Universität Hamburg

HELMHOLTZ

GEMEINSCHAFT

Ш

Fig:MOS HF equivalent model.

Fig: High frequency model in the presence of unwanted lossy layer at interface (extension of *Nicollian*, E. H. / *Brews*, J. R. MOS (Metal Oxide *Semiconductor*) Physics and Technology).

 \rightarrow Where, C_{ox} , C_D , Y_{it} , C_T , R_T , C_E , R_E , R_s , R_s' , C_{ma} , G_{ma} , C_m and G_m are known as oxide capacitance, depletion layer capacitance, admittance, capacitance, resistance due to unwanted lossy layer, lossy layer capacitance, , lossy layer resistance, series resistance, total series resistance, capacitance in strong accumulation, conductance in strong accumulation, measured capacitance, measured conductance. Corrected cacapacitance (C_c) and Corrected conductance (G_m):

$$C_{\rm c} = \frac{(w^2 C_{\rm m} C_{\rm E} - G_{\rm m}^2 - w^2 C_{\rm m}^2) (G_{\rm m}^2 + w^2 C_{\rm m}^2) (C_{\rm E})}{(w^2 C_{\rm E}^2) [G_{\rm m} (1 - R'_{\rm S} G_{\rm m}) - w^2 R'_{\rm S} C_{\rm m}^2]^2 + (G_{\rm m}^2 + w^2 C_{\rm m}^2 - w^2 C_{\rm m} C_{\rm E})^2}$$
$$G_{\rm c} = \frac{[G_{\rm m} (1 - R'_{\rm S} G_{\rm m}) - w^2 R'_{\rm S} C_{\rm m}^2] (G_{\rm m}^2 + w^2 C_{\rm m}^2) (w^2 C_{\rm E}^2)}{(w^2 C_{\rm E}^2)^2}$$

$$G_{\rm c} = \frac{[G_{\rm m}(1-R_{\rm s}G_{\rm m})-w^2R_{\rm s}C_{\rm m}](G_{\rm m}^++w^2C_{\rm m}^-)(w^2C_{\rm E}^-)}{(w^2C_{\rm E}^2)[G_{\rm m}(1-R_{\rm s}^\prime G_{\rm m})-w^2R_{\rm s}^\prime C_{\rm m}^2]^2 + (G_{\rm m}^2+w^2C_{\rm m}^2-w^2C_{\rm m}C_{\rm E})^2}.$$
DPG, Munich, 10 March 2009 Ajay K. Srivastava Uni.- Hamburg 16

Simulation of irradiated device

Experimental C/V characterstics for 0.5 MGy

HELMHOLTZ

GEMEINSCHAFT

Experimental C/V characterstics for 1 MGy and 1 GGy

Exp. Result : E.F et al. IEEE NSS 2008

Frequency dispersion effect in 0.5 MGy and highly irradiated device.