

Working Meeting on Science with and the Instrumentation for Small Quantum Systems at the European XFEL

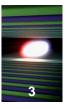
Serguei L. Molodtsov & Thomas Tschentscher European XFEL Project Team (EPT)

First Outcome of SQS-Workshop

2

Aarhus, Oct 29-31, 2008

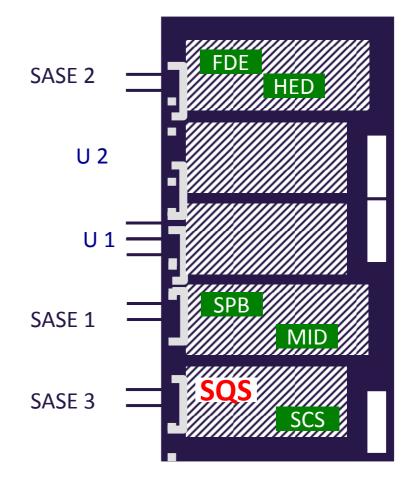
SQS – Small Quantum Systems – Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena


- General Organization at SASE 3
- Specific Equipment for SQS Instrument
 - Present situation
 - Points of discussion
 - Further Actions
 - Next Deadlines

SASE3 Characteristics

SASE 3 planar device for linear polarization

- designed for tunability range ~4
 - ⇒ 0.775 3.1 keV @ 17.5 GeV
 - ⇒ 0.250 1.0 keV @ 10 GeV
- 'conventional device'
 - ⇒ higher reliability for commissioning & operation
- magnetic length 105 m, saturation (3.1 keV, 19 mm) ~88 m
- R&D on possible upgrade scenarios has started



Distribution of First Instruments

Source	Photon beam line characeristics
SASE 1	FEL radiation ~12 keV High coherence Spontaneous radiation (3 rd , 5 th harmonics)
SASE 2	FEL radiation 3-12 keV High time-resolution Spontaneous radiation (3 rd , 5 th harmonics)
SASE 3	FEL radiation 0.25 – 3 keV; High flux
	FEL radiation 0.25 – 3 keV; High resolution

General Organization of SASE3

Possibility of beam distribution in 2 branches

- High flux beamline
- High resolution beamline

Points of discussion

- Flexible endstation
- Sharing with SCS (Workshop Villigen, June 2–4, 2009)
- Need of high resolution ($\Delta E / E > 1000$)
- Space redistribution at and around SQS

SQS Instrument

General equipment provided by XFEL

- Pump-Probe Laser

TDR: 1. high rep.rate, low pulse energy:

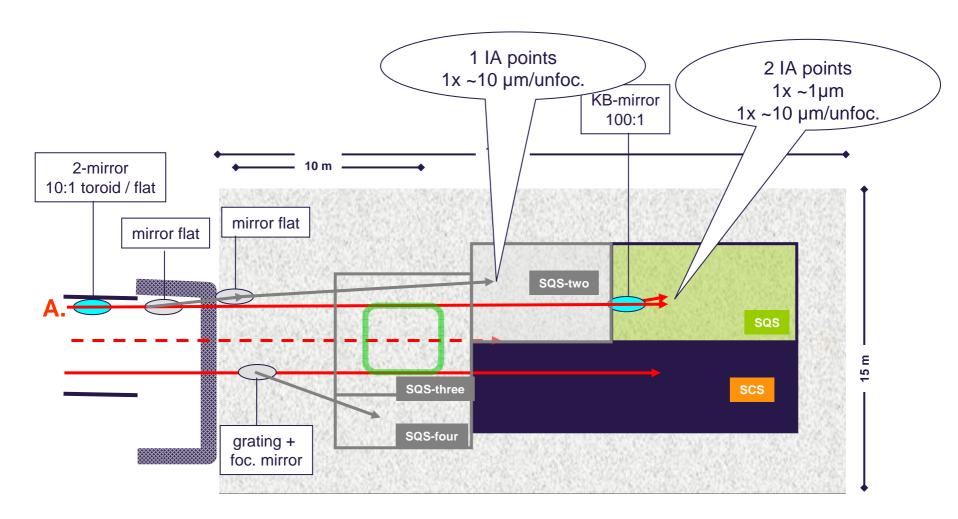
<50 fs, 0.1-3 mJ; >100 kHz, (pref. 1 - 5 MHz)

2. low rep.rate, high pulse energy:

<=30 fs, 1 mJ - 10 J,10 Hz

Beam diagnostics
 pulse energy, timing, spectral distribution etc.
 detailed definition of requirements

- Endstation for gas phase experiments
 versatile chamber for « standard » experiments
 - high-resolution TOF, VMI, COLTRIMS, Thomson parabola
 - 2D-photon pixel detector (to be discussed)



XFEL Possible layout instruments at SASE 3

SASE3 Instruments

- SQS
 1 hutch, 2 focal points (~1 μm + 10 μm/unfocussed),
 toroid+flat mirror, fs laser
- all following optional depending on funding:

SQS-two	1 hutch, 1 focal point (10 µm/unfocussed), 2
	additional flat mirrors, take-off from SQS
	~20-40 mrad \rightarrow ~ 30-60 cm !!!!, option for roll-on
	user instruments (no perm. instrument)
SQS-three	1 hutch, no focussed beam, ion storage ring

(~4x4 m²), inter-section with high intensity and mono. beam (if possible)

SQS-four 1 hutch, focussed, monochromatic beam for traps

SASE3 Instruments

Specific equipment provided by users

- Refocusing mirror ($< 1 \mu m$)
- Ion traps, ion storage ring
- Target handling

Points of discussion

- Detailed identification of specific needs:
 - mirror
 - targets (molec. jet, cluster, electrospray etc.)
- Integration of ion storage ring

Organization of SQS Space requirements Funding

SASE3 Instruments

Specific equipment: Laser systems

1) Alignment Laser

- adiabatic alignment

1-10ns, >10mJ, > 100 kHz (burst mode)

- non-adiabatic alignment

10-100 fs, 1-10 mJ, > 100 kHz

2) High-resolution laser

Definition of characteristics
Funding
Space requirements / Installation

Working Meeting on Science with and the Instrumentation for Small Quantum Systems at the European XFEL

Program

14:00 – 14:05 Introduction (XFEL Project Team)

14:05 – 14:25 Presentation of the final report (WG1)

14:25 – 14:45 Presentation of the final report (WG2)

14:45 – 15:00 Basic concept of the SQS instrument (XFEL Project Team)

15:00 – 15:20 Coffee break

15:20 – 15:45 "High repetition rate pulse-train lasers (Ingo Will, MBI Berlin) synchronized to XFEL"

15:45 – 17:00 General discussion of the SQS concept, sample environment requirements, equipment provided by the users, possibilities of extra funding, etc.

17:00 – 17:10 Conclusions, information

