

International Workshop on the Science with and the Instrumentation for Small Quantum Systems at the European XFEL October 29th-31st 2008

Jean-Marc Bizau LIXAM, CNRS, Université Paris-Sud, Orsay, France University of Aarhus, Denmark Michael Drewsen HASABESSENAY LATION OF TINAL COOPT Stefan Düsterer Marko Förstel European XFEL, DESY, Hamburg, Germany Jan Grünert Ottmar Jagutzki ROENTDEK, University of Frankfurt, Germany trom University of Aarhus, Denmark Lutz Lammich Stockholm University, Sweden Mats Larsson Jose R. Crespo Lopez-Urrutia Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany Serguei Molodtsov European XFEL, Hamburg, Germany University of la n s, n i in C Group On Henrik B. Pedersen Giessen University, Germany **Stefan Schippers Reinhold Schuch** Andreas Schwarz European XFEL, DESY, Hamburg, Germany Harald Sinn European XFEL, DESY, Hamburg, Germany Thomas Tschentscher European XFEL, DESY, Hamburg, Germany Andreas Wolf Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany

Working meeting on the Science with and the Instrumentation for Small Quantum Systems at the European XFEL, Hamburg, January 29th 2009

The scientific cases

XFEL light source

- 250-3100 eV
- 10¹²-10¹⁴ photons/pulse
- Large average intensity (high repetitiion rate)

Dilute ion targets

- 10⁴-10⁶ ions/cm³
- Specialized methods for preparation manipulation and detection
- Inner shell ionization in atomic ions in both low and high charge states.
- Molecular dynamics following x-ray photoionization revealed by kinematically complete momentum imaging.
- Multiphoton studies in the x-ray spectral region.
- X-ray photons scattered at trapped ion crystals in Penning or Paul Traps.
- Photoelectron spectroscopy and photoelectron-photoion coincidences in photoionization
 of atomic ions
- Photofragmentation of large biomolecular ions
- Inner shell photodetachment and photofragmentation of atomic and molecular anions
- Photoionization and photofragmentation of (endohedral) fullerene ions, mass selected cluster ions, and complex molecular ions
- Investigations of Highly Charged Ions with an EBIT
- Photoionization of single trapped atomic and molecular ions
- X-ray spectroscopy of single Highly

•lon targets provide a versatile tool for studies of fundamental interactions

Ionic matter is important everywhere in nature

Starting with the end ..

Modular stations

•Serial arrangements of experiments

Development of an ion beam facility

- •Electrostatic storage ring at room temperature
- Separator magnet
- Ion beam optics and diagnostics
- •RF-trap
- Modular interaction regions
- for merged and crossed beam experiments

Development of a versatile ion trap facility

- •EBIT
- •Penning trap
- •Paul (RF) trap
- •Optical setup for laser cooling and fluorescence detection

Bizeau (Orsay) Larsson (Stockholm) - Pedersen (Aarhus) Müller, Schippers (Giessen) Wolf (Heidelberg)

Crespo (Heidelberg) Drewsen (Aarhus) Schuch (Stockholm)

<mark>~ 2 M€</mark>

~ 1.3 M€

XFEL beam parameters and features

Photon energy range

•XFEL envisaged range 250 – 3100 eV Intensity:

•10¹²-10¹⁴ photons/pulse

Pulse repetition rate and time structure

Increased average flux: 10 Hz x 30000 pulses
Different time structure for different part of XFEL train adapted to serial experiments

Polarization

•Linear. Farther future experiments could demand circular polarization.

Focus

Ion beam experiments: beam size of 1 mm

•Ion trap experiments: <100 μm (EBIT), 1μm (Penning traps, Paul trap)

Monochromaticity

•E/ Δ E =100-1000 for photon hungry experiments (crossed beams)

• $E/\Delta E = 20\ 000$ for spectroscopic experiments (EBIT, Penning trap, merged-beams)

Tunability

•For spectroscopic experiments (EBIT, Penning trap, merged-beams) as large as possible tunability desired

Diagnostics

Pulse-to-pulse XFEL diagnostic: 1) absolute intensity, 2) polarization, 3) energy spectrum, 4) spatial intensity distribution, 5) temporal intensity distribution

Ion beam facility

General aspects for ion beam targets

Accelerated ions

methods for state preparation (E,m,q,quantum state, conformer)
Fragment detection benefit from moving beam (universal separation)

Cooling of the internal state

Cryogenic storage ringRF trap with buffer gas cooling

Increase of the target density

Ion storage + electron coolingRF trap for accumulation,

Development of an ion beam facility

- •Electrostatic storage ring at room temperature
- Separator magnet
- •Ion beam optics and diagnostics
- •RF-trap
- •Modular interaction regions
- for merged and crossed beam experiments

combined with storage ring for temporal matching to XFEL

lon trap facility

Image: Sector Sector

Aspects for ion trap targets

<u>EBIT</u>

Very high charge states
Increased target density (10⁹-10¹¹ cm⁻³)

Penning trap

Ion crystals in cold environme
Harmonic fields

Linear Paul trap

Single ion trapping and observation

Development of a versatile ion trap facility

- •EBIT •Penning trap •Paul (RF) trap
 - Paul (RF) trap
- •Optical setup for laser cooling and flourecence detection

Envisaged layout

Modular stations

•Serial arrangements of experiments

Development of an ion beam facility

- •Electrostatic storage ring at room temperature
- Separator magnet
- Ion beam optics and diagnostics
- •RF-trap
- •Modular interaction regions
- for merged and crossed beam experiments

Development of a versatile ion trap facility

- •EBIT
- •Penning trap
- •Paul (RF) trap
- •Optical setup for laser cooling and flourecence detection

~ 1.3 M€

Bizeau (Orsay) Larsson (Stockholm) Pedersen (Aarhus) Müller, Schippers (Giessen) Wolf (Heidelberg)

Crespo (Heidelberg) Drewsen (Aarhus) Schuch (Stockholm)