Ultrashort pulse lasers compatible to the FEL pulse structure

Ingo Will, Max Born Institute Berlin G. Klemz, DESY

Material included from: H. Redlin (DESY), M. Kalashnikov (MBI) and others

Ti:Sa laser versus OPCPA systems

- Ti:Sa lasers running at 10 Hz
- Limited usefulness of high-frequency CW-pumped lasers
- OPCPA burst-mode system in operation at FLASH, possible upgrades
- Feasibility of a Ti:Sa laser running in burst-mode

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Overview on the available laser parameters

operational mode	single pulse laser f = 10 Hz		CW with high rep. rate (f ³ 250 kHz)		Special Burst-mode laser (present Pump-Probe laser at FLASH)	
laser type	Ti:Sa	OPCPA	TiSa	OPCPA	Ti:Sa	OPCPA (presently at FLASH)
energy per micropulse	5 J, up to 10 J	several J	20 mJ	?	unknown	0.5 mJ
energy per train (600 m long)	single pulse	single pulse	0.003 J	?	unknown, 0.11 J estimated.	~ 1 J (presently at FLASH: 0.1 J)
pulse duration	£ 25 fs	> 15 fs	25160 fs	> 20 fs (?)	~ 25 fs	100 fs
wavelength [nm]	800 nm	6001500		600 2000	800 nm	800 nm (600 2000)
availability	commercial	home-made, under development	commercial: f < 200 kHz	home-made, under development	home-made, under development	home-made, working at FLASH
comments		Outperformed by Ti:Sa for $\tau > 20$ fs, E < 10 J	very few pulses (< 0.5%) coincide with pulses from the FEL		Development neccessary	SOS meeting 29 Jan 2

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Single-pulse Ti:Sa lasers Example: MBI high-power laser system built in 2002...2005 Öffner Stretcher 9-pass amplifier Femtosecond Oscillator grating 40 mJ High Dispersive P Pockels cell At=126 SF-6 300 mW ∆1=700ps 2 mJ Beam Vacuum Compressor 2.7J tenuator chamber 100 mJ 30[×] grating throughput = 73% grating Ti:Sa Ti:Sa Ø9mm 3.4J 3.4J 7.2 J 180 mJ 180 mJ Ti:Sa Ø30mm retroreflector Ø35mm 1-power amplifier Pre-amplifier @10 Hz @sinale shot E<2J E~5J t~35 fs t~40 fs Present parameters: 20J of the pump 2-power amplifier 10 Hz f = 10 Hzoperation EXPERIMENT Pulse energy E ~ 3.5 J **Single Shot** operation Pulse length: $\tau \sim 30$ fs the pump beam 28J@527 nm

 Similar systems are now commercially available from different companies (e.g. Thales, Amplitude, KLM labs ...)

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Single-pulse Ti:Sa lasers Example: MBI high-power laser system built in 2002...2005

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Single-pulse OPCPA systems

Example: VULCAN 10 PW OPCPA laser project (RAL Rutherford)

Reference: High energy broadband ultrashort pulse OPCPA system (O Chekhlov, J L Collier, I N Ross, P Bates, M Notley, W Shaikh, C N Danson, D Neely, P Matousek, S Hancock), Central Laser Facility Annual Report 2004/2005

- Being developed for very high pulse energies (e.g. RAL Rutherford)
 - Current parameters
 - E > 35 J (before compressor)
 - duration τ > 85 fs (FWHM)
 - Rep-rate: << 0.01 Hz (Nd:Glass pump laser)
 - Difficulties:
 - Huge systems
 - very low repetition rate

Ti:Sa systems outperform the OPCPA systems for the following parameters

- f = 10 Hz
- Pulse duration $\tau > 20$ fs
- Up to 5 J pulse energy

Overview on the available laser parameters

operational mode	single pulse laser f = 10 Hz		CW with high rep. rate (f ³ 250 kHz)		Special Burst-mode laser (present Pump-Probe laser at FLASH)	
laser type	Ti:Sa	OPCPA	TiSa	OPCPA	Ti:Sa	OPCPA (presently at FLASH)
energy per micropulse	5 J, up to 10 J	several J	20 mJ	?	unknown	0.5 mJ
energy per train (600 m long)	single pulse	single pulse	0.003 J	?	unknown, 0.11 J estimated.	~ 1 J (presently at FLASH: 0.1 J)
pulse duration	£ 25 fs	> 15 fs	25160 fs	> 20 fs (?)	~ 25 fs	100 fs
wavelength [nm]	800 nm	6001500		600 2000	800 nm	800 nm (600 2000)
availability	commercial	home-made, under development	commercial: f < 200 kHz	home-made, under development	home-made, under development	home-made, working at FLASH
comments		Outperformed by Ti:Sa for $\tau > 20$ fs, E < 10 J	very few pulses (< 0.5%) coincide with pulses from the FEL		Development neccessary	SOS meeting 29 Jan 2

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

High rep-rate Ti:Sa lasers and OPCPA systems

Reported systems:

- 20 μ J, τ < 50 fs, f = 250 kHz (P = 5 W) (KML labs)
- 250 μ J, τ < 200 fs, f = 50 kHz (P = 12.4 W) (Cyber lasers Inc. Japan)
- 200 μ J, τ < 25 fs, f = 50 kHz (P = 10 W) (ALPHA 1000 by Thales)
- 0.3 μ J, τ < 160 fs, f = 800 kHz (P = 0.3 W) (CNRS, Univ Paris-Sud)
- **Major problem** with high-rep.-rate lasers applied at the FEL:

FEL burst ~0.5 ms long		FEL burst ~0.5 ms long
<u>+ + + +</u>	Optical laser	<u>+ + + +</u>

- Duty cycle of the FEL < 0.5 %
 - -> Less than 0.5 % of the pulses from the optical laser would coincide with the FEL pulses
 - -> laser power effectively used at 5 W average power: P_{effective} < 25 mW
 - -> Lasers operating in burst-mode would be much more suitable for FLASH and the XFEL
- In addition: experience shows that the FEL is usually operated with reduced pulse duration (duty cycle < 0.1%)

Burst-mode lasers and OPCPA systems

 Burst-mode lasers short-pulse lasers are a very special requirement of DESY (due to the time structure given by the TESLA-type linac)
-> small market, no commercial systems available.

Burst-mode Ti:Sa lasers

- Not commercially available
- Very few projects exists to develop these systems. On the other hand: Urgent need of these systems for both FLASH and the XFEL
 - Pump-probe lasers for various experiments
 - Drive laser for seeding of the XFEL with High Harmonics
- Development of burst-mode Ti:Sa lasers for FLASH/XFEL would be highly desirable

Burst-mode OPCPA

- Not commercially available
- First burst-mode OPCPA system developed at the MBI in 2001...2005, in operation at FLASH since 2004
- Further improvements realistic
 - Pulse duration can be reduced to 25 fs (in special version to 15 fs)
 - Pulse energy could be increased by ~ one order of magnitude
 - Improvement of the pump laser: Diode pumped system now feasible

OPCPA system developed at the MBI in 2001...2005 (now operated at FLASH by H. Redlin)

OPCPA: Optical Parametric Chirped-Pulse Amplification

- Generates femtosecond pulses $\tau \le 150$ fs FWHM
- pulse energy available at present :

 $E_{micro} = 100 \ \mu J$ (before compressor)

 $E_{micro} = 50 \,\mu J$ (behind compressor)

- Available wavelength:
 - λ = 790...830 nm
 - on request: λ = 395...415 nm

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

output pulse train which contains 700 micropulses

The Nd:YLF pump laser and its output

output train of the Nd:YLF laser

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

- Generates trains of picosecond pulses $(\tau = 10 \dots 15 \text{ ps FWHM})$
- Synchronization accuracy (phase noise): σ < 0.5 ps
- Very reliable synchronization
- Rectangular envelope of the pulse trains

-> energy of the micropulses is stable within 1%

- Large flexibility in:
 - Duration of the pulse train
 - Repetition rate within the pulse train
 - Number of micropulses per train
- Wavelengths available to the user
 - $\lambda = 1047$ nm,
 - $\lambda = 523 \text{ nm}$
 - on special request: $\lambda = 349$ and 262 nm
- Pulses can be lengthened
 - Potential application: "alignment" laser

The three-stage booster amplifier

9 Jan. 2009

Diode-pumped oscillator and two-stage preamplifier of the pump laser

Ti:Sa oscillator of the synchronization test system

Tuning the wavelength of the OPCPA output

- Wavelength of the output pulses is determined by:
 - wavelength of the pulses from Ti:Sa oscillator (position of a slit in the resonator)
 - tilt of the OPA crystals (phase matching angle)
- Present wavelength range:
 - $\lambda = 790...830 \text{ nm}$
 - on special request: $\lambda = 395...415$ nm
- Challenge of future work:
 - fully remote-controlled scan of the wavelength

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Possible upgrades of the present Burst-mode OPCPA at FLASH

- Improved pump laser:
 - replace flashlamps by diode pump system
 - increased repetition rate
 - improved stability
 - Higher pump power
 - Increase of the output pulse energy $E_{micro} = 0.5...1 \text{ mJ}$ feasible (at f = 1 MHz)
- Enhanced tunability in wavelength (e.g by using a tunable oscillator, OPO)
- Reduction of the pulse duration to ~25 fs (optional down to <15 fs)
 - Improved dispersion management, BBO can support a very broad gain spectrum in an NOPA

(Non-collinear Optical-Parametric Amplifier) (see e.g. Krauss et al. Opt. Lett 30 (2005), pp. 547)

20 Hz OPCPA system developed at the MPQ

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Experience with the OPCPA system at FLASH

- OPCPA systems can be operated in Burst-mode with a time structure identical to the one of FLASH and XFEL
- Extended versions of the photocathode lasers are suitable for the required burst-mode pump lasers
 - Nd:YLF lasers (in operation at FLASH)
 - Yb:YAG lasers (under development)
- OPCPA turns out to be a rather complex technique
 - Expensive picosecond pump laser required
 - Pump lasers have to be synchronized to FLASH
 - More difficult to operate than Ti:Sa lasers
 - No turn-key system,
 - specialists are needed to operate the OPCPA system
 - OPCPA systems have rather limited flexibility and extendibility
 - -> constant effort to extend/replace the OPCPA by Ti:Sa lasers (single pulse)

But: The Ti:Sa systems do not run in burst mode at present

-> Feasibility of an alternative Ti:Sa systems running in burst-mode should be checked

Are Ti:Sa lasers capable of generating bursts of ultrashort pulses?

- Has anybody successfully built a Ti:Sa laser with at pulse structure compatible to FLASH or the XFEL?
 - Special pump laser required (not commercially available)
 - Fortunately, much smaller and more simple than the pump laser for an OPCPA system
 - No synchronization required
 - Can run with multiple TEM modes.
 - Thermal lensing during in the Ti:Sa crystal may cause stability of the pulse train
 - May be compensated by dynamically deformable mirror

Which part of the technology of the photoinjector drive lasers is suitable to develop a burst-mode Ti:Sa system?

UV output pulses of the present photoinjector drive laser at DESY Zeuthen

Pulse trains containing up to 800 micropulses

Shape of the micropulses measured with an optical sampling system

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Proof-of-principle experiment for a burst-mode Ti:Sa laser (proposal)

Burst-mode Ti:Sa systems: important technology for both FLASH and XFEL

- Proposed system can be set up based on existing technologies
 - Pump laser: experimental version exists at the MBI (present: E = 0.5 J during 0.6 ms)
 - High-frequency regenerative amplifier technology: developed at the MBI for the PITZ photocathode laser, transferred to DESY Zeuthen in spring 2008
 - Dynamic correction of the thermal lens: being developed for the XFEL photocathode laser

Present limits

- Man power, money

• Decision to do it is needed! Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Overview on the available laser parameters

operational mode	single pulse laser f = 10 Hz		CW with high rep. rate (f ³ 250 kHz)		Special Burst-mode laser (present Pump-Probe laser at FLASH)	
laser type	Ti:Sa	OPCPA	TiSa	OPCPA	Ti:Sa	OPCPA (presently at FLASH)
energy per micropulse	5 J, up to 10 J	several J	20 mJ	?	unknown	0.5 mJ
energy per train (600 m long)	single pulse	single pulse	0.003 J	?	unknown, 0.11 J estimated.	~ 1 J (presently at FLASH: 0.1 J)
pulse duration	£ 25 fs	> 15 fs	25160 fs	> 20 fs (?)	~ 25 fs	100 fs
wavelength [nm]	800 nm	6001500		600 2000	800 nm	800 nm (600 2000)
availability	commercial	home-made, under development	commercial: f < 200 kHz	home-made, under development	home-made, under development	home-made, working at FLASH
comments		Outperformed by Ti:Sa for $\tau > 20$ fs, E < 10 J	very few pulses (< 0.5%) coincide with pulses from the FEL		Development neccessary	SOS meeting 29 Jan 2

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Most likely scenario for XFEL: Installation of two different laser types

- 1. Single-pulse Ti:Sa laser with 10 Hz repetition rate (commercial)
 - 20...25 ps pulse duration
 - Initially: moderate pulse energy 50...200 mJ
 - Different final amplifiers (E= 0.1 ...5 J) in dependence on requirement of the experiment (financing by the particular experiment?)
 - Additional CPA or NOPA stages mainly for tuning the wavelength
 - Single-pulse OPCPA by MPQ: parameters to be shown (can it run in burst mode?)
- 2. Systems running in burst-mode (home-made)
 - Options:
 - Ti:Sa laser system with wavelength conversion (not yet available)
 - Short-pulse OPCPA laser with <50fs pulse duration (not yet available), pumped by a Nd:YLF or Yb:YAG burst-mode laser

Proof-of-principle experiment of a Ti:Sa laser that runs in burst mode is highly desired

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure

Summary

- Most optical lasers are not compatible to the FEL due to the different time structure (FEL pulse trains)
 - Application of high-rep rate CW-pumped lasers will be extremely inefficient due to the small duty cycle of the FEL
 - More suitable for FLASH and XFEL: lasers running in burst mode

Option #1: **OPCPA system running in burst-mode**

- Pulse duration down to ~ 15 fs and micropulse energy up to 0.5mJ feasible (at 1 MHz)
- Complex system, not commercially available

Option #2: Ti:Sa laser running in burst mode (to be developed)

- Pulse duration down to ~ 25 fs and micropulse energy up to 0.5 mJ seam to be feasible
- Best reliability + high flexibility
 - can be extended by commercial single-pulse amplifiers
 - Extension of the wavelength by frequency conversion and NOPAS
- not commercially available, proof-of-principle experiment can be done at the MBI

Option #3: Single-pulse Ti:Sa laser running at 10 Hz

• Commercially available with up to ~ 5J pulse energy and τ > 20 fs

Will, Klemz: Ultrashort pulse lasers compatible to the FEL pulse structure