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Annihilation boost

http://wwwmpa.mpa-garching.mpg.de/aquarius/

L(M) = [1 + Bsh(M)]Lhost

Bsh(M) =
1

Lhost ∫ dm
dNsh

dm
Lsh(m)



How uncertain is the boost? 

• Very uncertain, of which we don’t even 
have good sense


• No way that it can be solved with 
numerical simulations
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Figure 1. Surface brightness profiles from dark matter annihilation for var-
ious components of the Ph-A-1 simulation of a rich galaxy cluster. Sur-
face brightness is given in units of annihilation photons per cm2 per second
per steradian for fiducial values of 100Gev for mp, the dark matter parti-
cle mass, and 3× 10−26cm3s−1 for ⟨σv⟩, the thermally averaged velocity-
weighted annihilation cross-section, assuming Nγ = 1 photons per annihila-
tion. This surface brightness scales as Nγ⟨σv⟩/m2

p. Projected radius is given
in units of kpc. The red line shows radiation from the smoothly distributed
dark matter within the main component of the cluster. The ragged blue dot-
ted lines show radiation from resolved dark matter subhaloes with masses
exceeding 5×107, 5×108, 5×109 and 5×1010 M⊙ (from top to bottom).
Extrapolating to mass limits of 10−6 and 10−12 M⊙ as discussed in the text
gives rise to the smooth blue curves. The purple dashed lines show the re-
sults of summing smooth and subhalo contributions.

rection of 1.5) as the haloes in a representative volume of the Uni-
verse. Thus, we can use analytic predictions for the abundance and
concentration of field haloes (Sheth & Tormen 2002; Neto et al.
2007) to extrapolate our simulation results to much lower sub-
halo masses. The upper blue curves in Figure 1 show the resulting
predictions for minimum subhalo masses of 10−6 and 10−12 M⊙,
respectively. The most uncertain part of this extrapolation is the
assumption that halo concentration continues to increase towards
lower masses in the same way as measured over the mass range
simulated so far. This assumption has not yet tested explicitly, and
has a very large effect on the results. For example, if all (sub)haloes
less massive than 105 M⊙ are assumed to have similar concentra-
tion, then the total predicted emission from subhaloes would be
more than two orders of magnitude below that plotted in Figure 1
for an assumed cut-off mass of 10−6 M⊙.

With our adopted concentration scaling, subhaloes dominate
the surface brightness beyond projected radii of a few kiloparsecs,
as may be seen in Fig. 1. Surface brightness is almost constant be-
tween 10 and 300kpc, dropping by a factor of two only at 460kpc.
At the virial radius of the cluster (r200 = 1936 kpc), the surface
brightness of the subhalo component is a factor of 14 below its
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Figure 2. Annihilation luminosity (in arbitrary units) from subhaloes lying
within r200 per decade in subhalo mass and per unit halo mass (M200) for
the Phoenix and Aquarius simulations. The level-1 simulations are shown
by the black (Phoenix) and red (Aquarius) lines and the medians of the nine
Phoenix and six Aquarius level-2 simulations by the thick blue and orange
lines respectively. The full scatter in each set of simulations is indicated by
the shaded areas. The dashed magenta line gives the predicted annihilation
luminosity density per decade in halo mass from the cosmic population of
dark matter haloes.

central value. Within this radius the luminosity from resolved sub-
haloes in Ph-A-1 is more than twice that from the smooth halo,
even though these subhaloes account only for 8% of the mass. Ex-
trapolating to minimum subhalo masses of 10−6 and 10−12 M⊙

the subhalo excess becomes 718 and 16089 respectively. These
boost factors substantially exceed the equivalent factors predicted
for the galaxy haloes of the Aquarius Project. This is because of
the additional high-mass subhaloes which contribute in the cluster
case (see Figure 2) together with the lower concentration of cluster
haloes relative to galaxy haloes, which reduces the emission from
the smooth component. Note, the boost factor for the Aq-A-1 ob-
tained with the extrapolation we use here is smaller by a factor of
2.4 than the value quoted in Springel et al. (2008a).

For the resolved component, there is significant variation
amongst the nine Phoenix haloes, but the median value of the total
boost factor (for a cutoff mass of 10−6M⊙) is 1125, which, for the
reasons just given, is about twelve times the median boost factor we
obtain by applying the same method to the Aquarius haloes. Com-
paring these results suggests that the ratio of subhalo to smooth
main halo luminosity within r200 (subhalo “boost factor”) varies
with halo mass approximately as

b(M200) = Lsub/Lmain = 1.6×10−3(M200/M⊙)
0.39. (1)

The total luminosity of a halo is therefore Ltot = (1 + b)Lmain,
where Lmain is the emission of the smooth halo. In addition, the
projected luminosity profile of the subhalo component can be well
approximated by

Ssub(r) =
16b(M200)Lmain

π ln(17)
1

r2
200 +16r2 . (2)

These formulae will be used to estimate dark matter annihilation lu-
minosities and surface brightness profiles for haloes with different
masses in subsequent sections.

Gao et al., Mon. Not. R. Astron. Soc. 419, 1721 (2012)

Resolved

Extrapolated

12 A. Moliné et al.

where in the last step we have assumed an NFW profile and
for halos, we use the parametrization for the concentration
parameter from Prada et al. (2012) using the fit obtained in
Sánchez-Conde & Prada (2014).

With this at hand, the luminosity of a subhalo of mass m
at a distance Rsub from the center of the host halo, L(m,xsub),
is defined as

L(m,xsub) = [1 +B(m,xsub)]Lsmooth(m,xsub) . (12)

where now Lsmooth(m,xsub) is the luminosity for the smooth
distribution of the given subhalo and B(m,xsub) is the boost
factor due to the next level of substructure. The luminosity
of a subhalo (sub-subhalo) is given by the same functional
form as that of a field halo, but including the dependence of
the concentration parameter on the position of the subhalo
(sub-subhalo) inside the host halo (subhalo).

In addition to the mentioned dependences, we note that
subhalos are not homogeneously distributed within the host
halo (Springel et al. 2008; Hellwing et al. 2015; Rodŕıguez-
Puebla et al. 2016). However, we have checked that the precise
spatial distribution of subhalos inside halos has only a small
impact on our results (below 10%). Therefore, for the sake
of comparison with previous works, we do not include this
dependence here and postpone its discussion to future work.
By assuming that the subhalo mass function does not change
within the halo, we can write the boost factor as

B(M) =
3

Lsmooth(M)

Z M

Mmin

dN(m)
dm

dm

Z 1

0

dxsub

[1 +B(m)] L(m,xsub)x
2
sub , (13)

where dN(m)/dm is the subhalo mass function for a halo of
mass M , dN(m)/dm = A/M (m/M)�↵. The normalization
factor is equal to A = 0.012 for a slope of the subhalo mass
function ↵ = 2 and to A = 0.03 for ↵ = 1.9 (Sánchez-Conde
& Prada 2014), and was chosen so that the mass in the re-
solved substructure amounts to about 10% of the total mass
of the halo,11 as found in recent simulations (Diemand et al.
2007b; Springel et al. 2008). Note that, as done in most of
previous works,12 we have not subtracted the subhalo mass
fraction from the smooth halo contribution, so in principle,
this leads to a slight overestimate of the smooth halo luminos-
ity, and hence, to a slight underestimate of the boost factor.
This is expected to be a small correction, though, since it ap-
plies mainly to the outer regions of the halo where the subhalos
represent a larger mass fraction and the smooth contribution
is much smaller and subdominant with respect to the contri-
bution from substructure (Palomares-Ruiz & Siegal-Gaskins
2010; Sánchez-Conde et al. 2011).

In the case of an NFW profile, as the one we are using,
the luminosity from the smooth DM distribution of a field
halo can also be expressed in terms of the maximum circular
velocity, V h

max, (Diemand et al. 2008)

Lsmooth(V
h
max) '
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, (14)

11 Extrapolating the subhalo mass function down to m/M =
10�18, those normalizations correspond to ⇠ 50% (⇠ 30%) of the
total mass of the halo for ↵ = 2 (↵ = 1.9).
12 See, e.g., Pieri et al. (2011) for one of the few exceptions.
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Figure 6. Halo substructure boost to the DM annihilation signal as
a function of the host halo mass. We have used our c200(m200, xsub)
parametrization in Eq. (6) and adopted Mmin = 10�6 M�. We
present results for two values of the slope of the subhalo mass
function, ↵ = 1.9 (lower, light red lines) and ↵ = 2 (black lines).
We also show the boost obtained with the DM profile-independent
definition of cV (green line), for which we have used our fit for
cV(Vmax, xsub) in Eq. (7), and (Vmax)min = 10�3.5 km/s. Notably,
the cV result lies within the results found for c200 and the two slopes
of the subhalo mass function considered. Thin lines correspond to
results obtained assuming subhalos and sub-subhalos are not trun-
cated by tidal forces, while thick lines represent the more realistic
case, in which subhalos and sub-subhalos have been tidally-stripped
(see text). The dashed lines correspond to the results obtained in
Sánchez-Conde & Prada (2014) when assuming that both halos and
subhalos of the same mass have the same concentration values.

and, in a similar way, by including the radial dependence of
the concentration of subhalos, one can obtain the subhalo lu-
minosity function, L(Vmax, xsub).

In this case, the boost factor for a field halo with maxi-
mum circular velocity V

h
max (analogously to Eq. (13)), can be

written as

B(V h
max) =

3
Lsmooth(V h

max)

Z V h
max

(Vmax)min

dN(Vmax)
dVmax

dVmax

Z 1

0

dxsub [1 +B(Vmax)] L(Vmax, xsub)x
2
sub ,

(15)

where (Vmax)min is the value of Vmax which corresponds to
Mmin. In order to compute the luminosity in terms of V

h
max

we need the subhalo mass function in terms of Vmax, and we
use the result of Diemand et al. (2008), dN(Vmax)/dVmax =
(0.108/V h

max) (V
h
max/Vmax)

4.
The results for the boost factor defined in Eqs. (13)

and (15) are shown in Fig. 6, where we use the parametriza-
tions for c200(m200, xsub), cV(Vmax, xsub), c

h
V(V

h
max) and

c� 2016 RAS, MNRAS 000, 1–??

Moliné et al., Mon. Not. R. Astron. Soc. 466, 4974 (2017)

dN/dm ∝ m−2

dN/dm ∝ m−1.9



Analytic model of subhalo evolution

• Complementary to numerical simulations


• Light, flexible, and versatile


• Can cover large range for halo masses (micro-halos to 
clusters) and redshifts (z ~ 10 to 0)


• Physics-based extrapolation 

• Reliable if it is tested compared with simulations at 
resolved scales



Analytic model: Recipe
Structures start to form

Smaller halos merge and accrete 
to form larger ones

Subhalos experience mass loss

Initial condition:  
Primordial power spectrum

Extended Press-Schechter 
formalism

Modeling for tidal stripping 
and mass-loss rate
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Halo formation and accretion history

• Based on spherical collapse model and extended Press-
Schechter formalism (Yang et al. 2011)


• Primordial power spectrum + cutoff scale will change rms 
over-density σ(M)

d2Nsh

dmaccdzacc
∝

1

2π

δ(zacc) − δM

(σ2(macc) − σ2
M)3/2

exp [−
(δ(zacc) − δM)2

2(σ2(macc) − σ2
M) ]



Subhalo accretion rate

10 Yang et al.

Fig. 7.— Model predictions for the distribution of accretion redshifts for subhalos with ma/M0 = 0.1 (solid lines), 0.03 (dotted lines),
0.01 (dashed lines), 0.003 (long dashed lines) and 0.001 (dot-dashed lines) respectively. Results are shown for host halos of different masses
as indicated in the panels. These results assume a ΛCDM universe and are compared with the results obtained from the 300 h−1Mpc box
N-body simulations with the same cosmology (open circles). For comparison, results obtained from the 100 h−1Mpc box simulations are
also shown (as filled triangles) for cases where statistics are sufficiently good.

tively, where the error-bars have been obtained using 200
bootstrap resamples. The various lines show the predic-
tions based on Model III, and overall match the simu-
lation results remarkably well. Note that the accretion
rate depends strongly on the mass of the host halo. For
the same mass ratio, subhalos in more massive hosts are
accreted later, reflecting the hierarchical nature of struc-
ture formation in the ΛCDM cosmology.

4.4. Un-evolved subhalo mass functions

Finally, let us look at the un-evolved subhalo mass
functions. By integrating Eq. (3) over a given redshift
range, we can obtain the un-evolved mass function of
the subhalos accreted in that redshift range. In Fig. 8
we show the un-evolved mass functions of subhalos ac-
creted in the redshift ranges [0, 1], [1, 2], [2, 3], [3, 4]
and [4, 5], respectively. Results are shown for host ha-
los of different masses, as indicated in each panel. Here

again, symbols indicate the results from our simulation
boxes, while lines show the predictions of Model III.
Clearly, our model is in excellent agreement with the
simulation results at all redshifts and for all host masses.
Upon close inspection, it is clear that the un-evolved sub-
halo mass function for a given redshift range depends on
host halo mass, especially at high redshift: in terms of
the scaled mass, ma/M0, the subhalo mass function at
high z is significantly higher for lower-mass host halos.
Moreover, the normalization of the un-evolved subhalo
mass function at a given redshift for halos of different
masses seem to be roughly proportional to the assem-
bly history of the host halos shown in Fig. 1. To test
this, we show in Fig. 9 the un-evolved subhalo mass
functions for different host halos at the time when the
host halos have assembled a fixed fraction of their fi-
nal masses, i.e. for subhalos accreted in a given range
of log[Ma/M0] range. Results are shown for five dif-
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Infall distribution of subhalos: 

Extended Press-Schechter formalism

d2N

d lnmad ln(1 + za)

Yang et al., Astrophys. J. 741, 13, (2011)
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Lsh(z |macc, zacc) ∝ ρ2
s (z |macc, zacc)r3

s (z |macc, zacc){1 −
1

[1 + rt(z |macc, zacc)/rs(z |macc, zacc)]3 }
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Subhalo mass loss

• Monte Carlo approach following Jiang & van den Bosch 
(2016)


• Determine orbital energy and angular momentum


• Assume the subhalo loses all the masses outside of 
its tidal radius instantaneously at its peri-center 
passage


• Mass-loss rate follows power law for wide range of m/M

4

B. Numerical simulations

We have also calculated the tidal stripping of subhalos
using N -body simulations. To cover a wide range of halo
mass, we used five large cosmological N -body simula-
tions. Table I summarizes the detail of these simulations.
The ⌫2GC-S, ⌫2GC-H2 [38], and Phi-1 simulations cover
halos with large mass (⇠1011M�). The Phi-2 simulation
is for intermediate mass halos (⇠107M�). To analyze the
smallest scale (⇠10�6M�), the A N8192L800 simulation
is used. The cosmological parameters of these simula-
tions are ⌦m = 0.31, �0 = 0.69, h = 0.68, ns = 0.96,
and �8 = 0.83, which are consistent with an observa-
tion of the cosmic microwave background obtained by the
Planck satellite [2, 39] and those adopted in the other sec-
tions of the present paper. The matter power spectrum
in the A N8192L800 simulation contained the cuto↵ im-
posed by the free motion of dark matter particles with a
mass of 100 GeV [9, 26]. Further details of these simula-
tions are presented in Reference. [38] and Ishiyama et al.
(in preparation).

All simulations were conducted by a massively paral-
lel TreePM code, GreeM [40, 41].1 Halos and subha-
los were identified by ROCKSTAR phase space halo and
subhalo finder [42]. Merger trees are constructed by con-
sistent tree codes [43]. The halo and subhalo catalogs
and merger trees of the ⌫2GC-S, ⌫2GC-H2, and Phi-1
simulations are publicly available at http://hpc.imit.
chiba-u.jp/~ishiymtm/db.html.

C. Comparison

We calculate the mass-loss rate of the subhalos for vari-
ous redshift z and the host mass Mhost (defined as M200).
First, we choose the subhalo mass at accretion macc uni-
formly in a logarithmic scale between the smallest mass
10�6M� and the maximum mass 0.1M(zacc). For each
set of macc and zacc (as well as z and Mhost), we calcu-
late the mass-loss rate ṁ following the prescription given
in Sec. III A, by taking a Monte Carlo appraoch; i.e., by
drawing the concentration of the host halos, subhalo con-
centration, circularity ⌘, and radius of the circular orbit
Rc of subhalos following the distributions of each of these
parameters.

In Figure. 1, we show results of our Monte Carlo sim-
ulations. We find that for a large dynamic range of sub-
halo mass m (over 19 orders of magnitude as shown in
the insets) down to very small masses such as 10�6M�, a
single power-law function [Eq. (1)] gives a very good fit,
which confirms the physical origin of this relation, not
just being a simple phenomenological fit.

We compare the results of the Monte Carlo calcula-
tions to those of the N -body simulations as described in

1 http://hpc.imit.chiba-u.jp/~ishiymtm/greem/

FIG. 1. Mass-loss rate of subhalos as a function of orbit-
averaged subhalo mass m in units of the host mass Mhost

for Mhost = 1013M� and z = 0 (top), Mhost = 107M� and
z = 5 (middle), and Mhost = 10�2M� and z = 32 (bottom).
Cyan points show the Monte Carlo simulation results. Blue
squares with error bars show the results obtained by N -body
simulations. Thick error bars correspond to the 50% of the
simulated halos around the median, while thin ones to the
90%. We also show the results of the Monte Carlo simulations
of wider mass range in inserted panels, which also include the
fitting results with Eq. (1), as overwritten solid lines on the
Monte Carlo points.

Sec. III B, which is also shown in Figure. 1 for m/Mhost &
10�5 (m is the orbit-averaged mass of the subhalos), re-
solved in the N -body simulations. At relatively small
redshifts for both Mhost = 1013M� and 107M�, we find
very good agreement between the two prescriptions. We
also check the applicability of the analytical approach by
comparing the results with those of N -body simulations
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of wider mass range in inserted panels, which also include the
fitting results with Eq. (1), as overwritten solid lines on the
Monte Carlo points.

Sec. III B, which is also shown in Figure. 1 for m/Mhost &
10�5 (m is the orbit-averaged mass of the subhalos), re-
solved in the N -body simulations. At relatively small
redshifts for both Mhost = 1013M� and 107M�, we find
very good agreement between the two prescriptions. We
also check the applicability of the analytical approach by
comparing the results with those of N -body simulations

4

B. Numerical simulations

We have also calculated the tidal stripping of subhalos
using N -body simulations. To cover a wide range of halo
mass, we used five large cosmological N -body simula-
tions. Table I summarizes the detail of these simulations.
The ⌫2GC-S, ⌫2GC-H2 [38], and Phi-1 simulations cover
halos with large mass (⇠1011M�). The Phi-2 simulation
is for intermediate mass halos (⇠107M�). To analyze the
smallest scale (⇠10�6M�), the A N8192L800 simulation
is used. The cosmological parameters of these simula-
tions are ⌦m = 0.31, �0 = 0.69, h = 0.68, ns = 0.96,
and �8 = 0.83, which are consistent with an observa-
tion of the cosmic microwave background obtained by the
Planck satellite [2, 39] and those adopted in the other sec-
tions of the present paper. The matter power spectrum
in the A N8192L800 simulation contained the cuto↵ im-
posed by the free motion of dark matter particles with a
mass of 100 GeV [9, 26]. Further details of these simula-
tions are presented in Reference. [38] and Ishiyama et al.
(in preparation).

All simulations were conducted by a massively paral-
lel TreePM code, GreeM [40, 41].1 Halos and subha-
los were identified by ROCKSTAR phase space halo and
subhalo finder [42]. Merger trees are constructed by con-
sistent tree codes [43]. The halo and subhalo catalogs
and merger trees of the ⌫2GC-S, ⌫2GC-H2, and Phi-1
simulations are publicly available at http://hpc.imit.
chiba-u.jp/~ishiymtm/db.html.

C. Comparison

We calculate the mass-loss rate of the subhalos for vari-
ous redshift z and the host mass Mhost (defined as M200).
First, we choose the subhalo mass at accretion macc uni-
formly in a logarithmic scale between the smallest mass
10�6M� and the maximum mass 0.1M(zacc). For each
set of macc and zacc (as well as z and Mhost), we calcu-
late the mass-loss rate ṁ following the prescription given
in Sec. III A, by taking a Monte Carlo appraoch; i.e., by
drawing the concentration of the host halos, subhalo con-
centration, circularity ⌘, and radius of the circular orbit
Rc of subhalos following the distributions of each of these
parameters.

In Figure. 1, we show results of our Monte Carlo sim-
ulations. We find that for a large dynamic range of sub-
halo mass m (over 19 orders of magnitude as shown in
the insets) down to very small masses such as 10�6M�, a
single power-law function [Eq. (1)] gives a very good fit,
which confirms the physical origin of this relation, not
just being a simple phenomenological fit.

We compare the results of the Monte Carlo calcula-
tions to those of the N -body simulations as described in

1 http://hpc.imit.chiba-u.jp/~ishiymtm/greem/

FIG. 1. Mass-loss rate of subhalos as a function of orbit-
averaged subhalo mass m in units of the host mass Mhost

for Mhost = 1013M� and z = 0 (top), Mhost = 107M� and
z = 5 (middle), and Mhost = 10�2M� and z = 32 (bottom).
Cyan points show the Monte Carlo simulation results. Blue
squares with error bars show the results obtained by N -body
simulations. Thick error bars correspond to the 50% of the
simulated halos around the median, while thin ones to the
90%. We also show the results of the Monte Carlo simulations
of wider mass range in inserted panels, which also include the
fitting results with Eq. (1), as overwritten solid lines on the
Monte Carlo points.

Sec. III B, which is also shown in Figure. 1 for m/Mhost &
10�5 (m is the orbit-averaged mass of the subhalos), re-
solved in the N -body simulations. At relatively small
redshifts for both Mhost = 1013M� and 107M�, we find
very good agreement between the two prescriptions. We
also check the applicability of the analytical approach by
comparing the results with those of N -body simulations

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are

c⃝ 0000 RAS, MNRAS 000, 000–000

Truncated NFW

Springel et al., Mon. Not. R. Astron. Soc. 391, 1685, (2008)
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are
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tended the halo profile is in the inner-most regions. The
first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
Interestingly, the location of the peak velocity of cored mod-
els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
stripping carries on indefinitely.

Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
Appendix A).

4 SEMI-ANALYTIC REALIZATIONS OF
GALACTIC MERGER TREES

The results presented in §3 show that the response of galax-
ies to tides strongly depends on the slope of the inner density
profile of dark matter haloes, �, as well as to the presence
of a baryonic disc embedded in the host galaxy. This raises
the question of whether the satellite populations surround-
ing spiral galaxies may provide insights into the inner struc-
ture of dark matter haloes. In order to explore this issue,
simulations that follow the hierarchical formation of spiral
galaxies through the accretion of individual satellites are re-
quired. We begin by outlining a method to construct merger
trees of spiral galaxies, and then discuss the e↵ects of vary-
ing � and the disc-to-parent halo mass ratio on the present
population of satellite galaxies.

4.1 Build-up of merger trees

4.1.1 The host galaxy

We construct merger trees using Monte Carlo methods.
Specifically we employ the merger tree algorithm described
by Parkinson et al. (2008) which is itself an empirical modi-
fication of that described by Cole et al. (2000). We adopt the

Figure 6. Evolution of the peak circular velocity vmax ⌘
Vc(rmax) and its location, measured at the apocentres of the var-
ious orbits in our simulation series. Open and closed symbols
denote simulations with and without a baryonic disc component
(Md = 0.1Mvir), respectively. The dashed lines are our fits to the
evolutionary tracks using eq. [8].

Figure 7. The evolution of the host galaxy parameters for five
di↵erent merger tree realizations of a halo with Mvir = 1012M�
at z = 0 is shown in the upper panels. Here we plot the virial mass
and concentration in the upper-left and -right panels, respectively.
The disc component embedded in the host galaxy also grows with
time. For this particular plot we show the evolution of a disc with
Md = 0.1Mvir and a = 6.5 kpc at z = 0. The disc mass and size
are plotted in the lower-left and -right panels, respectively.
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8 Peñarrubia et al.
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first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
Interestingly, the location of the peak velocity of cored mod-
els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
stripping carries on indefinitely.

Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
Appendix A).

4 SEMI-ANALYTIC REALIZATIONS OF
GALACTIC MERGER TREES

The results presented in §3 show that the response of galax-
ies to tides strongly depends on the slope of the inner density
profile of dark matter haloes, �, as well as to the presence
of a baryonic disc embedded in the host galaxy. This raises
the question of whether the satellite populations surround-
ing spiral galaxies may provide insights into the inner struc-
ture of dark matter haloes. In order to explore this issue,
simulations that follow the hierarchical formation of spiral
galaxies through the accretion of individual satellites are re-
quired. We begin by outlining a method to construct merger
trees of spiral galaxies, and then discuss the e↵ects of vary-
ing � and the disc-to-parent halo mass ratio on the present
population of satellite galaxies.

4.1 Build-up of merger trees

4.1.1 The host galaxy

We construct merger trees using Monte Carlo methods.
Specifically we employ the merger tree algorithm described
by Parkinson et al. (2008) which is itself an empirical modi-
fication of that described by Cole et al. (2000). We adopt the

Figure 6. Evolution of the peak circular velocity vmax ⌘
Vc(rmax) and its location, measured at the apocentres of the var-
ious orbits in our simulation series. Open and closed symbols
denote simulations with and without a baryonic disc component
(Md = 0.1Mvir), respectively. The dashed lines are our fits to the
evolutionary tracks using eq. [8].

Figure 7. The evolution of the host galaxy parameters for five
di↵erent merger tree realizations of a halo with Mvir = 1012M�
at z = 0 is shown in the upper panels. Here we plot the virial mass
and concentration in the upper-left and -right panels, respectively.
The disc component embedded in the host galaxy also grows with
time. For this particular plot we show the evolution of a disc with
Md = 0.1Mvir and a = 6.5 kpc at z = 0. The disc mass and size
are plotted in the lower-left and -right panels, respectively.

c� 0000 RAS, MNRAS 000, 000–000

8 Peñarrubia et al.

tended the halo profile is in the inner-most regions. The
first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
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els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
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Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
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Subhalo density profile after mass loss

• Procedure

1. Solve the differential equation from 
zacc to z to get m

2. Calculate ρs and rs following 
Penarrubia et al. (2010)

3. Obtain truncation radius rt by solving
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Figure 22. Subhalo density profiles for nine different subhalos in the Aq-A halo, simulated with varying resolution. The profiles show
the bound mass only and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power
et al. (2003). They are continued with thin lines down to the scale 2 ϵ. Vertical dashed lines mark the radii where the force law becomes
Newtonian (2.8 ϵ). The dot-dashed purple line in each panel is the density profile of all the mass around the subhalo’s centre (i.e. including
unbound mass). The thin black line shows a fit with the Einasto profile. The labels in each panel give the maximum circular velocity,
mass, and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we here allowed to vary
freely in our fits.

Our best resolved subhalos in the Aq-A-1 simulation contain
more than 10 million particles, allowing a relatively precise
characterization of their density profiles. Until recently, such
particle numbers represented the state-of-the-art for simu-
lations of main halos.

In Figure 22, we show spherically averaged density pro-
files for 9 subhalos within the Aq-A halo. For each we com-
pare up to 5 different resolutions, covering a factor of ∼ 1835
in particle mass. The density profiles line up quite well out-
side their individual resolution limits, as predicted by the
convergence criterion of Power et al. (2003) in the form given
in equation (3). Individual profiles in the panels are plotted
as thick solid lines at radii where convergence is expected
according to this criterion, but they are extended inwards

as thin lines to twice the gravitational softening length (the
gravitational force is exactly Newtonian outside the radii
marked by vertical dashed lines). These density profiles are
based on particles that are gravitationally bound to the sub-
halos, but for comparison we also show a profile for each
subhalo that includes all the mass (i.e. including unbound
particles; thick dashed lines). It is clear that the background
density dominates beyond the ‘edge’ of each subhalo. It is
therefore important that this region is excluded when fitting
analytic model density profiles to the subhalos.

In making such fits, we restrict ourselves to the radial
range between the convergence radius (equation 3) and the
largest radius where the density of bound mass exceeds 80%
of the total mass density. The density profiles themselves are
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tended the halo profile is in the inner-most regions. The
first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
Interestingly, the location of the peak velocity of cored mod-
els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
stripping carries on indefinitely.

Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
Appendix A).

4 SEMI-ANALYTIC REALIZATIONS OF
GALACTIC MERGER TREES

The results presented in §3 show that the response of galax-
ies to tides strongly depends on the slope of the inner density
profile of dark matter haloes, �, as well as to the presence
of a baryonic disc embedded in the host galaxy. This raises
the question of whether the satellite populations surround-
ing spiral galaxies may provide insights into the inner struc-
ture of dark matter haloes. In order to explore this issue,
simulations that follow the hierarchical formation of spiral
galaxies through the accretion of individual satellites are re-
quired. We begin by outlining a method to construct merger
trees of spiral galaxies, and then discuss the e↵ects of vary-
ing � and the disc-to-parent halo mass ratio on the present
population of satellite galaxies.

4.1 Build-up of merger trees

4.1.1 The host galaxy

We construct merger trees using Monte Carlo methods.
Specifically we employ the merger tree algorithm described
by Parkinson et al. (2008) which is itself an empirical modi-
fication of that described by Cole et al. (2000). We adopt the

Figure 6. Evolution of the peak circular velocity vmax ⌘
Vc(rmax) and its location, measured at the apocentres of the var-
ious orbits in our simulation series. Open and closed symbols
denote simulations with and without a baryonic disc component
(Md = 0.1Mvir), respectively. The dashed lines are our fits to the
evolutionary tracks using eq. [8].

Figure 7. The evolution of the host galaxy parameters for five
di↵erent merger tree realizations of a halo with Mvir = 1012M�
at z = 0 is shown in the upper panels. Here we plot the virial mass
and concentration in the upper-left and -right panels, respectively.
The disc component embedded in the host galaxy also grows with
time. For this particular plot we show the evolution of a disc with
Md = 0.1Mvir and a = 6.5 kpc at z = 0. The disc mass and size
are plotted in the lower-left and -right panels, respectively.
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tended the halo profile is in the inner-most regions. The
first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
Interestingly, the location of the peak velocity of cored mod-
els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
stripping carries on indefinitely.

Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
Appendix A).
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tended the halo profile is in the inner-most regions. The
first is that, at a given mass loss fraction, the peak veloc-
ity declines more significantly as we decrease the value of
�. The second di↵erence is in the evolution of the satellite
size, which is clearly more substantial for satellite galaxies
with cusps, as expected from Fig. 4 and 5. The right panel
of Fig. 6 shows that rmax is severely shortened by the ac-
tion of tides if the slope of the inner halo profile is � > 0.
Interestingly, the location of the peak velocity of cored mod-
els cannot drop further than a factor ' 3, regardless of the
amount of mass lost to tides. This is in marked contrast
with cuspy haloes, which may shrink into oblivion if tidal
stripping carries on indefinitely.

Irrespective of pericentre, number of completed orbits,
host potential, or slope of the inner density profile, the evo-
lution of the structural parameters depends solely on how
much the satellite mass has varied. This is a remarkable re-
sult, especially because our series of models includes extreme
cases in which the satellite models lose more than 99.99%
of their original mass. Following Peñarrubia et al. (2008b),
we use a simple empirical formula to fit the evolution of the
structural parameters

g(x) =
2µx⌘

(1 + x)µ
; (8)

where x ⌘ ms/ms(t = 0) and g(x) represents either vmax

or rmax. The best-fit values of µ and ⌘ have been plotted in
each of the panels of Fig. 6, and the results are shown with
dashed lines.

The fact that the evolution of satellite galaxies as they
are stripped by tides follows well-defined tracks will be used
in the following Sections to build a simple semi-analytical
algorithm that follows the disruption of dark matter haloes
with di↵erent inner profiles with reasonable accuracy (see
Appendix A).

4 SEMI-ANALYTIC REALIZATIONS OF
GALACTIC MERGER TREES

The results presented in §3 show that the response of galax-
ies to tides strongly depends on the slope of the inner density
profile of dark matter haloes, �, as well as to the presence
of a baryonic disc embedded in the host galaxy. This raises
the question of whether the satellite populations surround-
ing spiral galaxies may provide insights into the inner struc-
ture of dark matter haloes. In order to explore this issue,
simulations that follow the hierarchical formation of spiral
galaxies through the accretion of individual satellites are re-
quired. We begin by outlining a method to construct merger
trees of spiral galaxies, and then discuss the e↵ects of vary-
ing � and the disc-to-parent halo mass ratio on the present
population of satellite galaxies.

4.1 Build-up of merger trees

4.1.1 The host galaxy

We construct merger trees using Monte Carlo methods.
Specifically we employ the merger tree algorithm described
by Parkinson et al. (2008) which is itself an empirical modi-
fication of that described by Cole et al. (2000). We adopt the

Figure 6. Evolution of the peak circular velocity vmax ⌘
Vc(rmax) and its location, measured at the apocentres of the var-
ious orbits in our simulation series. Open and closed symbols
denote simulations with and without a baryonic disc component
(Md = 0.1Mvir), respectively. The dashed lines are our fits to the
evolutionary tracks using eq. [8].

Figure 7. The evolution of the host galaxy parameters for five
di↵erent merger tree realizations of a halo with Mvir = 1012M�
at z = 0 is shown in the upper panels. Here we plot the virial mass
and concentration in the upper-left and -right panels, respectively.
The disc component embedded in the host galaxy also grows with
time. For this particular plot we show the evolution of a disc with
Md = 0.1Mvir and a = 6.5 kpc at z = 0. The disc mass and size
are plotted in the lower-left and -right panels, respectively.
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Lsh(z |macc, zacc) ∝ ρ2
s (z |macc, zacc)r3

s (z |macc, zacc){1 −
1

[1 + rt(z |macc, zacc)/rs(z |macc, zacc)]3 }

Formulation

Parameters subhalo density profile after tidal mass loss

Ltotal
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Lsh(z |macc, zacc)
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Accretion Evolution



Results



Comparison with simulations
5

TABLE I. Details of five cosmological N -body simulations used in this study. Here, N , L, and mp are the total number of
particles, box size, and mass of a simulation particle, respectively.

Name N L Softening mp (M�) Reference

⌫2GC-S 20483 411.8 Mpc 6.28 kpc 3.2⇥ 108 [38, 44]

⌫2GC-H2 20483 102.9 Mpc 1.57 kpc 5.1⇥ 106 [38, 44]

Phi-1 20483 47.1 Mpc 706 pc 4.8⇥ 105 Ishiyama et al. (in prep)

Phi-2 20483 1.47 Mpc 11 pc 14.7 Ishiyama et al. (in prep)

A N8192L800 81923 800.0 pc 2.0⇥ 10�4 pc 3.7⇥ 10�11 Ishiyama et al. (in prep)

of small-mass hosts at higher redshift, z = 32, for which
⌘ distribution at z = 7 of Reference. [37] was adopted.
Even at the very high redshift and for very small host
mass of Mhost = 10�2M�, we still find reasonable agree-
ment within di↵erences of factor of a few in ṁ between
results obtained by the Monte Carlo approaches and the
N-body simulations. Although we cannot test the valid-
ity of our Monte Carlo approach for m/Mhost ⌧ 10�5

in comparison with the N -body simulations, these agree-
ments that have been seen in Figure. 1 from very small to
large hosts as well as from very high to low redshifts give
us confidence that our analytical prescription captures
physics of tidal stripping, and hence can be applied even
to the cases with an extremely small mass ratio m/Mhost.

From each calculation of (Mhost, z), we fitted the values
of A and ⇣ in Eq. (1). We then derived the dependence
of A and ⇣ on the host mass Mhost and z as:

logA =


�0.0003 log

✓
Mhost

M�

◆
+ 0.02

�
z

+ 0.011 log

✓
Mhost

M�

◆
� 0.354, (23)

⇣ =


0.00012 log

✓
Mhost

M�

◆
� 0.0033

�
z

� 0.0011 log

✓
Mhost

M�

◆
+ 0.026. (24)

We obtain the relations, Eqs.(23) and (24), from results
of the Monte Carlo simulations that covers the host mass
from Mhost = 10�6M� to 1016M� and the redshift from
z = 0 to 7.

IV. RESULTS

By combining the tidal mass-loss rate (Sec. III) with
the analytical prescription for computing density profiles
after tidal stripping as well as the subhalo accretion onto
evolving hosts (Sec. II), we are able to calculate quan-
tities of interest related to the subhalos. They are the
subhalo mass function and the annihilation boost factor,
discussed below in Secs. IVA and IVB, respectively.

We first fix the reshift of interest z0 and the host
mass at that redshift, M0. For each set of (M0, z0),
we uniformly sample macc in logarithmic space between

10�6M� and 0.1M0, and zacc between z0 + 0.1 and
10. Each combination is characterized by a subscript
i, (lnmacc,i, zacc,i). Its weight wi is chosen to be propor-
tional to the subhalo accretion rate from the extended
Press-Schechter formalism (Appendix C):

wi /

✓
d2Nsh

d lnmaccdzacc

◆

i

. (25)

This weight is normalized such that

X

i

wi = Nsh,total, (26)

where Nsh,total represents the total number of sub-
halos ever accreted on the given host by the time
z = z0. It is obtained by numerically integrating
d2Nsh/(d lnmaccdzacc) [Eq. (C1)] over lnmacc and zacc.
This way, we essentially approximate the integral of the
distribution of lnmacc and zacc as

Z
d lnmacc

Z
dzacc

d2Nsh

d lnmaccdzacc
!

X

i

wi. (27)

A. Mass function of subhalos

As discussed in Sec. III A, the subhalo mass at z0 after
tidal stripping, m0,i, is calculated by integrating Eq. (1)
over cosmic time from that corresponding to z = zacc,i
to z = z0. The parameters A and ⇣ are taken from
Eqs. (23) and (24), respectively. For each i, we obtain
the subhalo concentrations at accretion following the log-
normal distribution P (cvir,acc|macc,i, zacc,i) as discussed
in Sec. II and calculate the scale radius rs,i and char-
acteristic density ⇢s,i at redshift zacc,i, as functions of
cvir,acc. Those quantities after tidal stripping is then ob-
tained from those before the stripping combined with the
stripped mass m0,i, as in Sec. II. If the truncation radius,
rt,i, is found smaller than 0.77rs,i at z = z0 after the tidal
stripping, we exclude the subhalo from calculation of the
mass function as it is regarded as completely disrupted.
The subhalo mass function is then constructed as the

distribution of m0,i properly weighted by wi with the

Cluster
Galaxy
Dwarf
Dwarf

Micro

[38] Ishiyama et al., Pulb. Astron. Soc. Jap. 67, 61 (2015)

[44] Makiya et al., Pulb. Astron. Soc. Jap. 68, 25 (2016)
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condition of tidal disruption as follows:

dNsh

dm
=

X

i

wi�(m�m0,i)

⇥

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥⇥[rt,i(z0|cvir,acc)� 0.77rs,i(z0|cvir,acc)],

(28)

where �(x) and ⇥(x) are the Dirac delta function and
Heaviside step function, respectively.

The subhalo mass function has been studied most com-
monly through N -body simulations in the literature. We
show m2dNsh/dm obtained by the numerical simulations
and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subahalo mass
function for host masses Mhost = 1.8 ⇥ 1012M� and
5.9⇥1014M� at z = 0 with the fitting functions to the re-
sults of Refs. [20] and [44], respectively. In both cases, the
simulations and analytical models show reasonable agree-
ment, while our model predicts fewer subhalos. In the
middle panel of Fig. 2, we compare the mass function at
z = 2 and z = 4 compared with results of Ref. [45], for the
host that has the mass ofMhost = 1013M� at z = 0. This
again shows very good agreement between the two ap-
proaches, where the subhalos are resolved in the numer-
ical simulations. Our model can also be applied to cases
of even smaller hosts. In the bottom panel of Fig. 2, we
compare the subhalo mass function for Mhost = 106M�
and 107M� at z = 5 with the results of the Phi-2 simu-
lations in Sec. III B. Down to the resolution limit of the
simulations that are around 500–1000M�, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
since it is physically motivated, the behavior at low-mass
end down to very small masses can also be regarded as
reliable.

In Fig. 3, we show the slope of the subhalo mass func-
tion

� ↵ =
d ln(dNsh/dm)

d lnm
, (29)

(i.e., dNsh/dm / m�↵) for the same models as in Fig. 2.
We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.

Fig. 4 shows the mass fraction of the host mass that is
contained in the form of the subhalos:

fsh =
1

Mhost

Z 0.1Mhost

10�6M�

dm m
dNsh

dm
. (30)

At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.

Subhalo mass function:

Galaxies at z=2,4
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condition of tidal disruption as follows:

dNsh

dm
=

X

i

wi�(m�m0,i)

⇥

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥⇥[rt,i(z0|cvir,acc)� 0.77rs,i(z0|cvir,acc)],

(28)

where �(x) and ⇥(x) are the Dirac delta function and
Heaviside step function, respectively.

The subhalo mass function has been studied most com-
monly through N -body simulations in the literature. We
show m2dNsh/dm obtained by the numerical simulations
and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subahalo mass
function for host masses Mhost = 1.8 ⇥ 1012M� and
5.9⇥1014M� at z = 0 with the fitting functions to the re-
sults of Refs. [20] and [44], respectively. In both cases, the
simulations and analytical models show reasonable agree-
ment, while our model predicts fewer subhalos. In the
middle panel of Fig. 2, we compare the mass function at
z = 2 and z = 4 compared with results of Ref. [45], for the
host that has the mass ofMhost = 1013M� at z = 0. This
again shows very good agreement between the two ap-
proaches, where the subhalos are resolved in the numer-
ical simulations. Our model can also be applied to cases
of even smaller hosts. In the bottom panel of Fig. 2, we
compare the subhalo mass function for Mhost = 106M�
and 107M� at z = 5 with the results of the Phi-2 simu-
lations in Sec. III B. Down to the resolution limit of the
simulations that are around 500–1000M�, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
since it is physically motivated, the behavior at low-mass
end down to very small masses can also be regarded as
reliable.

In Fig. 3, we show the slope of the subhalo mass func-
tion

� ↵ =
d ln(dNsh/dm)

d lnm
, (29)

(i.e., dNsh/dm / m�↵) for the same models as in Fig. 2.
We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.

Fig. 4 shows the mass fraction of the host mass that is
contained in the form of the subhalos:

fsh =
1

Mhost

Z 0.1Mhost

10�6M�

dm m
dNsh

dm
. (30)

At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.

Subhalo mass function:
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Lsh,i with weight wi and averaged over cvir,acc with its
distribution:

Ltotal
sh (M) =

X

i

wi

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥ Lsh,i(z|cvir,acc)

⇥⇥[rt,i(z|cvir,acc)� 0.77rs,i(z|cvir,acc)].

(34)

2. Presence of sub-subhalos

The discussions above, especially Eq. (33), are based
on the assumption that the density profile of subhalos is
given by smooth NFW function. Subhalos, however, con-
tain their own subhalos: i.e., sub-subhalos, which again
contain sub-sub-subhalos, and so on. This is because the
subhalos, before accreting onto their host, were formed
by mergers and accretion of even smaller halos. In the fol-
lowing, we refer to them as subn-subhalos; the discussion
above correspond to the case of n = 0, where subhalos
do not include sub-subhalos.

We include the e↵ect of subn-subhalos iteratively. In
the case of n � 1, when a subhalo i accretes at zacc,i
with a mass macc,i, we give it a sub-subhalo boost

B(n�1)
sh (macc,i, zacc,i) obtained from the previous itera-

tion; for n = 1, it is Eq. (32) evaluated at macc,i and
zacc,i. After the subhalo exprience the mass loss, its sub-
subhalos as well as smooth component are stripped away
up to the tidal radius rt,i. Since the sub-subhalo dis-
tribution (that the gamma-ray brightness profile from
the sub-subhalos follows) is flatter than the brightness
profile of the subhalo’s smooth component that is pro-
portional to the NFW profile squared, the sub-subhalo
boost decreases. In order to quantify this e↵ect, we as-
sume that the sub-subhalos are distributed as nssh(r) /
(r2 + r2s)

�3/2 (see, e.g., Ref. [46] and references therein),
and further assuming that rs and ⇢s hardly change af-
ter mass loss, the total sub-subhalo luminosity enclosed
within r is

Lssh,i(< r) / ln

2

4
s

1 +

✓
r

rs,i

◆2

+
r

rs,i

3

5�
rq

r2 + r2s,i

.

(35)
On the other hand, the enclosed luminosity from the
smooth NFW component is

Lsh,i(< r) / 1�

✓
1 +

r

rs,i

◆�3

. (36)

The sub-subhalo boost for the subhalo i at redshift z
after n-th iteration is therefore estimated as

B(n)
ssh,i(z) = B(n�1)

sh (macc,i, zacc,i)

⇥
Lssh,i(< rt,i)/Lssh,i(< rvir,i)

Lsh,i(< rt,i)/Lsh,i(< rvir,i)
, (37)

FIG. 5. Boost factor Bsh = Ltotal
sh /Lhost as a function of

the host mass Mhost (defined as M200) between 10�3M� and
1016M� at observation redshifts z = 0, 1, 2, 3, and 4. The
calculations include up to sub3-subhalos.

where rvir,i is the virial radius of the subhalo i at accre-
tion.
We finally obtain the subhalo boost factor after n-th in-

teration (that takes up to subn�1-subhalos into account),

B(n)
sh (M, z), by combining Eqs. (31)–(34), but also by

multiplying Lsh,i in Eq. (33) with 1+B(n)
ssh,i(z0) [Eq. (37)].

In this calculation, we consider the subhalos accreted af-
ter z = 10, which assures that we can follow the mass-loss
of the subhalos contributing to the boost factor at z < 5.
Fig. 5 shows the boost factor Bsh as a function of host
mass Mhost (defined as M200) for several redshifts, after
fourth iteration that takes up to sub3-subhalos into ac-
count. For z = 0, the subhalo boost increases gradually
with the mass of the hosts, and reaches to about a factor
of ten for cluster-size halos. The boost for high redshifts
is still significant, being on the order of one, for wide
range of host masses.
In Fig. 6, we investigate the e↵ect of higher-order sub-

structure: subn-subhalos. Including no sub-substructure
(n = 0) would underestimate the boost by about a fac-
tor of a few for massive host halos such as galaxies and
clusters. We find that the boost saturates after the third
iteration, after which further enhancement is of several
percent level.

V. DISCUSSION

A. Comparison with earlier work

The current work updated an analytical model of
Ref. [27], by (i) implementing the scatter distribution
in the concentration-mass relation for both the host and
subhalos, (ii) calibrating the subhalo mass-loss rate down

• Boost factors are higher 
at larger redshifts, but 
saturates after z = 1


• Boost can be as large as 
~3 (10) for galaxies 
(clusters)


• For one combination of 
host mass and redshifts 
(M, z), the code takes 
only ~O(1) min to 
calculate the boost on 
a laptop computer

Annihilation boost
Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)
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FIG. 7. The same as Figure. 5, but for the concentration-mass
relation in Reference. [54].

considerations, which expect higher concentration espe-
cially around z = 0. In order to compare the dependence
of the boost factor on the di↵erent concentration-mass re-
lations, we also calculated the boost factor adopting the
relation in Reference. [54]. In Figure. 7, we show that the
boost factor enhances by more than a fector of a few if we
adopt the concentration-mass relation of Reference. [54]
instead of that of Reference. [31]. Obtained boost fac-
tor directly reflects the di↵erence of the concentrations
at around z = 0. We do not discuss the feasibility of
these concentrations since that is beyond the scope of
this paper. Our results show that deeper understanding
of the concentration-mass relation is necessary to obtain
the boost factor corresponding to the actual situations.

In Reference. [55], there are some discussions about
the mass-concentration relation and the primordial cur-
vature perturbations in the early Universe. If primordial
power spectrum has a feature that gives rise to ultra-
compact minihaloes, it may boost dark matter annihi-
lation even more significantly by changing density pro-
files and concentration-mass relation. Although evaluat-
ing the subhalo boost for these specific models is beyond
the scope of our work, we note that such a significant
boost predicted by References. [55, 56] may already be
constrained very strongly using the existing gamma-ray
data.

D. Contriubtion to the isotropic gamma-ray
background

One of the advantages of our analytical model of the
subhalo boost is capability of calculating the isotropic
gamma-ray background (IGRB) from dark matter an-
nihilation, since we can compute boost factors for var-
ious host masses and the wide range of redshifts, self-
consistently. The intensity of IGRB was most re-

FIG. 8. Contriubtion to the IGRB intensity measured by
Fermi-LAT from dark matter annihilation for h�vi = 2.2 ⇥
10�26 cm3 s�1, m� = 100 GeV, and bb̄ final state. The solid
(dotted) curve shows the case of the subhalo boost (no boost).

cently measured with Fermi-LAT [57], which was then
used to constrain dark matter annihilation cross section
(e.g., [58]).

We followed the “halo model” approach of Refer-
ence. [47] to compute the IGRB contribution from
dark matter annihilation, but by applying the results
of the annihialtion boost factor from our analytical
model (Figure. 5) as well as by including scatter of the
concentration-mass relation. Figure 8 shows the IGRB
intensity from dark matter annihilation in the case of the
canonical annihilation cross section for thermal freezeout
scenario, h�vi ' 2 ⇥ 10�26 cm3 s�1 [59], dark matter
mass of m� = 100 GeV, and bb̄ final state of the annihi-
lation (�� ! bb̄). Our boost model enhances the IGRB
intensity by a factor of a few compared with the case
of no subhalo boost. Note that contribution from the
Galactic subhalos (e.g., [60]) is not included, and hence
our estimate is conservative.

We then performed a simple analysis of the Fermi-LAT
IGRB data [58]. We included two components: (1) dark
matter annihilation of a given massm� and assuming a bb̄
final states, and (2) an “astrophysical” power-law compo-
nent with a cuto↵, for which we adopt the best-fit spec-
tral shape, Iastro(E) / E�2.32 exp(�E/279 GeV) [58].
By adopting normalizations of these components as two
free parameters for the fit, we performed a �2 analysis in
order to obtain the upper limits on h�vi. For the IGRB
data, we adopt those for a foreground model “A” in Ref-
erence. [58], but treat statistical and systematic uncer-
tainties as independent errors. Figure 9 shows the upper
limits on h�vi at 95% confidence level (��2 = 2.71) using
our canonical boost model as well as the case of no boost.
Our updated boost model improves the limits by a fac-
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FIG. 9. Upper limits on dark matter annihilation cross section
at 95% confidence level as a function of dark matter mass for
bb̄ final state. Solid and dashed curves are for the canonical
boost model and without subhalo boost, respectively. For
comparison, the result of the latest joint-likelihood analysis
of 41 dwarfs [61] are shown as a dotted curve.

tor of a few nearly indepently of dark matter mass (see
also, e.g., References. [62, 63] for earlier results). This en-
hancement is calculated consistently as our formalism au-
tomatically computes all the subhalo properties at once
including mass function and the boost factor. We also
compare our limits with the latest results of the joint
likelihood analysis of 41 dwarf spheroidal galaxies [61],
which set the benchmark as the most robust constraints
on dark matter annihilation.

Although some improvements of the limit obtained
from the observations of dwarf spheroidal galaxies also
can be expected, we conservatively neglect this contribu-
tion according to the discussion in Reference. [27]. We
find that the IGRB limits with our boost model are com-
petitive to the dwarf bounds for dark matter massese at
⇠200 GeV. Note that more accurate limits should include
uncertainties coming from modeling of the astrophysical
contributions. Further consideration is needed in order
to obtain correct values, which is slated for future works.
(See also Reference. [64] for a detailed discussion on var-
ious sources of uncertainties.)

The small-scale angular power spectrum of the IGRB
has also been measured with Fermi-LAT [65], which
provides yet another avenue to constrain dark matter
annihilation [47, 66] as well as high-energy astrophysi-
cal sources [67, 68]. It is also pointed out that taking
cross correlations with local gravitational tracers such
as galaxy catalogs is a promising way along the same
line [69–71]. Since these anisotropy constraints are more
sensitive to the dark matter distribution at smaller red-
shifts and in larger hosts, the e↵ect of the subhalo boost

is expected to be even more important than for the IGRB
intensity. A dedicated investigation is beyond the scope
of this work and hence reserved as subject in a future
paper. We also note that our updated boost model will
impact the result of stacking analysis of nearby galaxy
groups [72], which relied on the boost model of Refer-
ence. [27].

VI. CONCLUSTIONS

We can access the substructure of dark matter halos
which is beyond the resolutions of the numerical simula-
tions by taking analytical approach on the modeling of
the tidal mass loss of the subhalos. We analytically mod-
eled the mass loss of subhalos under the gravitational
potential of their hosts, following the evolution of both
the host and subhalos in a self-consistent way. In order
to take distributions of the concentrations of the hosts,
orbits and concentrations of subhalos into account, we
conducted Monte Carlo simulations. We find that the
mass loss of the subhalos are well described with Eq.
(1) down to the scale of m/Mhost ⇠ O(10�19), and well
agree with results of N -body simulations.
Combining the derived relation about the subhalo mass

loss with analytical models for mass and redshift distri-
butions of accreting subhalos, we calculated the subhalo
mass functions and the boost factor for dark matter an-
nihilation. We showed that mass functions of subhalos
derived in our analytical modeling are consistent with
those obtained in N -body simulations down to their res-
olution limits. From our model of the subhalo boost of
dark matter annihilation, we expect enhancement in the
gamma-ray signals by up to a factor of ⇠10 because of
the remaining substructures in larger halos, predicting
promising opportunities for detecting particle dark mat-
ter in future gamma-ray observations. Including sub-
structures in the subhalos will give important contribu-
tion to the annihiation boost up to a factor of a few.
The results of our calculations are consistent with both

earlier analytical and numerical approaches, but are ap-
plicable to much wider (and arbitrary) range of host
masses and redshifts, and hence can be used to predict
gamma-ray flux from dark matter annihilation in vari-
ous halos at any redshifts. As an example, we computed
the contribution to the isotropic gamma-ray background
from our boost model. We find that the presence of sub-
halos (and their substructures) enhace the gamma-ray
intensity by a factor of a few, and hence the limits on the
annihilation cross section improves by the same factor,
excluding region of h�vi & 4 ⇥ 10�26 cm3 s�1 for dark
matter masses smaller than ⇠200 GeV.
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• Test of Fermi unassociated sources in 
light of Gaia non-detection: upper limit 
109 Msun within 20 kpc


• Analytic subhalo model enables to 
compute PDF of source extension and 
gamma-ray flux (for a fixed distance)


• Only they can be dark matter 
annihilation for 109 Msun at d = 3 kpc


• This is unlikely because (1) probability 
is very small and (2) it will be depleted 
by the disk


• Conclusion: no Fermi unassociated 
sources are subhalos

Application: Fermi unassociated sources
A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources 7

Figure 5. Upper limits on the angular size corresponding to the
scale radius ✓s (top) and gamma-ray flux (bottom) from DM
annihilation F� as a function of distance d. From top to bottom,
the blue solid lines correspond to pre-infall halo masses: M200 =
109, 108, and 106M� , respectively. For the M200 = 107 M� subhalo,
we show the 1� scatter in our theoretical modelling as a light blue
band. This scatter owes primarily to the uncertain tidal mass
loss history of the subhalo. The horizontal red dotted lines show
the measured values from the Fermi-LATdata analysis for 3FGL
J2212.5+0703.

J2212.5+0703 and 3FGL J1924.8-1034 are better explained
by two point sources rather than a single extended source.
Our results here are consistent with this finding, excluding
the hypothesis of DM annihilation from a subhalo within
d < 20 kpc.

Fermi-LAT Collaboration & Biteau (2018) found six
additional unassociated extended sources. In this work,
we analysed all of them, and found no signature of
a dSph galaxy in any of these fields. Among them,
FHES J1723.5�0501, FHES J1741.6�3917, and FHES
J2304.0+5406 were found to have an energy spectrum harder
than E�2, as is expected from DM annihilation. In Fig. 6 we
also show measured values of (✓s, F�) for these six Fermi-
LAT unassociated sources. As can be seen, none of these
unassociated sources are compatible with DM annihilation
within our 2� contours, unless the pre-infall mass of the
subhalo is close to the upper limit, 109M�, and it is located
around d = 3 kpc. Such a massive pre-infall halo is very
unlikely to be found so close to the Sun – especially when

Figure 6. 1� and 2� regions of the joint PDF, P(✓s, F� ), for
subhalos with a pre-infall mass of M200 = 107M� at d = 10 kpc
(lower solid), 109M� at 10 kpc (upper solid), 107M� at 3 kpc
(lower dotted), and 109M� at 3 kpc (upper dotted). Measured val-
ues for the eight Fermi unassociated sources are shown for com-
parison: 3FGL J2212.5+0703 (star), 3FGL J1924.8�1034 (circle),
FHES J1501.0�6310 (pentagon), FHES J1723.5�0501 (diamond),
FHES J1741.6�3917 (square), FHES J2129.9+5833 (cross), FHES
J2208.4+6443 (plus), and FHES J2304.0+5406 (square).

accounting for subhalo depletion by the disc (see the dis-
cussion on this, above). Since the annihilation cross section
h�vi = 2 ⇥ 10�26 cm3 s�1 adopted here is already in ten-
sion with other data analyses (e.g., Albert et al. 2017) for
25 GeV WIMPs, possibilities with lighter (. 109M�) halos
are excluded.

Finally, we discuss a few caveats, all of which we be-
lieve make our conclusion, above, stronger. Firstly, the dis-
cussions up to this point have been based on the assump-
tion that the subhalo only experienced tidal stripping due to
gravitational potential of the spherical host halo. However,
subhalos orbiting within d < 20 kpc are likely on eccentric
orbits and will additionally experience tidal shocks that can
lower their central density by up to a factor of ⇠ 10 (e.g.
Read et al. 2006). Furthermore, we have not taken into ac-
count the e↵ect of the Milky Way disc that depletes the
number of substructures within 20–30 kpc by a factor of ⇠ 2
(D’Onghia et al. 2010). Including such e↵ects will lower the
gamma-ray flux for a given pre-infall M200 requiring us to
further increase the annihilation cross section, further exas-
perating the tension with the constraints from the known
Milky Way dSphs. Finally, we have only considered subha-
los within d < 20 kpc. Lighter subhalos at larger distances
than this would be too faint to be consistent with the ob-
served fluxes, unless they have large annihilation cross sec-
tions at odds with the constraints from the known dSphs
in the Milky Way. Massive subhalos with M200 > 109 M� at
larger distances would have a readily detectable stellar coun-
terpart, and then a DM annihilation signal from the known
dSphs in the Milky Way should be already detected (see the
discussion, above). Hence, this can also be excluded. We con-
clude that none of the unassociated, extended, Fermi-LAT
sources studied here can have a DM annihilation origin.

MNRAS 000, 1–9 (2018)
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Conclusions
• Combining the distribution of subhalo accretion with the 

evolution afterwards, we can analytically model various 
subhalo quantities such as mass function and annihilation 
boost factor


• The subhalo mass function appears to be in good 
agreement with results of numerical simulations for wide 
range of masses and redshifts


• The annihilation boost factors are predicted to be ~3 (10) for 
galaxy (cluster) halos


• The boost is not as uncertain as has been considered
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FIG. 3. The slope of the subhalo mass function �↵ =
d ln(dNsh/dm)/d lnm as a function of m. The slope was av-
eraged over mass bins of width � logm = 1.

B. Subhalo boost

1. Case of smooth subhalos

The gamma-ray luminosity from dark matter annihi-
lation in the smooth NFW component of the host halo

FIG. 4. Mass fraction of the host halo in the form of sub-
halos, fsh as a function of Mhost, for z = 0, 1, 2, 3, and
4. Blue squares represent the subhalo mass fractions in
Ref. [45], which are derived using subhalos of which mass
covers 1.73⇥1010h�1M� to Mhost. Solid thin line shows the
corresponding subhalo mass fraction in our calculation.

with mass M and redshift z is obtained as

Lhost(M) /

Z
dcvirP (cvir|M, z)⇢2sr

3
s


1�

1

(1 + cvir)3

�
,

(31)
where P (cvir|M, z) is again the log-normal distribution
of the host’s concentration parameter given M and z,
and the scale radius rs and the characteristic density ⇢s
are both dependent on cvir as well as on M and z. The
constant of proportionality of this relation includes parti-
cle physics parameters such as the mass and annihilation
cross section of dark matter particles, but since here we
are interested in the ratio of the luminosities between the
subhalos and the host, their dependence cancels out.
Subhalo boost factor quantifies the contribution of all

the subhalos to the total annihilation yields compared
with the contribution from the host. It is defined as

Bsh(M) =
Ltotal
sh (M)

Lhost(M)
, (32)

such that the total luminosity from the halo is given as
Ltotal = (1 + Bsh)Lhost. The luminosity from a single
subhalo i characterized with its accretion massmacc,i and
redshift zacc,i, as well as its virial concentration cvir,acc is

Lsh,i / ⇢2s,ir
3
s,i


1�

1

(1 + rt,i/rs,i)3

�
, (33)

where rs,i, rt,i, and ⇢s,i are the scale radius, truncation
radius, and characteristic density of the subhalo i after
it experienced the tidal mass loss, and hence they are
functions of macc,i, zacc,i, and cvir,acc as well as the mass
of the host M and redshift z (Sec. II). The total sub-
halo luminosity Ltotal

sh (M) is then obtained as the sum of

Subhalo mass function:

Mass fraction in the subhalos
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• Include effect of subn-
subhalos iteratively


• They are assumed to 
be distributed following


• All the sub-subhalos 
outside of the tidal 
radius is assumed lost


• Important to include up 
to sub2-substructures 


•

Annihilation boost
9

FIG. 6. Subhalo boost factor at z = 0 including subn-
subhalos; i.e., n-th sub-substructure.

to extremely small mass ratio m/M using the Monte
Carlo simulations of the tidal stripping, (iii) extending
the calculations of the boost factor as well as the sub-
halo mass function beyond z = 0, and (iv) including sub-
subhalos and beyond. They are all essential ingredients
to improve the accuracy of the subhalo modeling, and
hence the current work is regarded as direct update of
Ref. [27]. As the quantitative outcome, we find that the
subhalo boost without contribution from sub-subhalos
(n = 0) is consistent with the result of Ref. [27]. Our
result including up to sub3-subhalos further enhances the
boost by a factor of 2–3 for large halos, and extends the
calculation down to 10�4M�.

The e↵ect of tidal stripping on the annihilation boost
has also been studied in Refs. [47, 48] by using di↵erent
approaches, but they both have reached a similar con-
clusion to that of Ref. [27]. In particular, Ref. [48] relied
directly on N -body simulations to claim that subhalos
are more concentrated than field halos of the equal mass,
and hence, the annihilation boost is larger than previous
estimates by, e.g., Ref. [49]. One of the great advantages
of directly using the results from N -body simulations is
its accuracy when the discussion concerns the resolved
regime. However, each simulation is computationally de-
manding, and thus, it is not easy to generalize the discus-
sion to wider ranges of host masses and redshifts. In fact,
in order to compute the subhalo boost factor as a func-
tion of the host mass, Ref. [48] had to combine the sub-
halo concentration-mass relation with the subhalo mass
function, for the latter of which a few phonomenological
fitting functions calibrated with other simulations were
adopted. Hence, the boost factor as its outcome shows
a very large range of uncertainties depending on what
model of the mass function one adopts. In our analyti-
cal approach, on the other hand, we are able to perform
physics-based computations of the subhalo boost factor
and mass function in a self-consistent manner, for very

FIG. 7. The same as Fig. 5, but for the concentration-mass
relation in Ref. [51].

wide ranges of masses and redshifts.
Reference [50] modeled dark matter subhalos in a

Milky-Way-like halo at z = 0 by including the e↵ect of
the disk shocking as well as the tidal stripping. Our re-
sult of the annihilation boost factor is consistent with
that of Ref. [50] after integrating over the entire volume
of the halo and assuming the subhalo mass function of
/ m�1.9. Our discussion in Sec. III can be expanded
to accommodate the spatial distribution of subhalos, but
doing so and comparing the result with that of Ref. [50]
would include proper modeling of the baryonic compo-
nent, which is beyond the scope of the present work.

B. A case without tidal disruption

Ref. [21] recently pointed out that the tidal disruption
for the subhalos with rt < 0.77rs might be a numeri-
cal artifact, and many more subhalos even with much
smaller truncation radius rt could survive against the
tidal disruption. In this paper, we do not argue for or
against the claim of Ref. [21], but simply study the im-
plication of the claim as an optimistic example. To this
end, we repeated the boost calculations without imple-
menting the constraint rt > 0.77rs; i.e., all the subhalos
survive no matter how much mass they lose due to the
tidal stripping. We find that the obtained boost factor
hardly changes at any redshift.

C. Dependence on the concentration-mass relation

In our calculations of the boost factor, we adopted the
mass-concentration relation in Ref. [31] as the canoni-
cal model. Their derivation is based on the analysis
with N -body simulations. Ref. [51] proposed a di↵er-
ent concentration-mass relation based on analytical con-

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)

z = 0

w/ subn-subhalos

∝ [1 + (r/rs)2]−3/2



Fermi unassociated sources

• There are several extended unassociated sources that might be compatible with 
dark matter annihilation from subhalos


• E.g., 3FGL J2212.5+0703 (Bertoni et al. 2016); 3FGL J1924+1034 (Xia et al. 2017)

Figure 2. Residual maps of the regions surrounding the subhalo candidate 3FGL J2212.5+0703
(left frame) and the known blazar 3FGL J2134.1-0152 (right frame). These maps display the photon
flux per square degree (above 1 GeV) and have been smoothed with a 0.15� Gaussian. Whereas the
source in the left frame shows significant evidence of spatial extension, the source in the right frame
is consistent with point-like emission.

4 Systematic Uncertainties: Assessing the Robustness of 3FGL J2212.5+0703’s
Spatial Extension

In this section, we will describe tests that we have performed in order to establish the
probability that the spatial extension observed from 3FGL J2212.5+0703 is authentic, as
opposed to being the result of problems with the di↵use emission model or confusion between
multiple nearby gamma-ray sources.

4.1 Using Associated 3FGL Sources as a Control Group

In addition to the unassociated sources discussed in the previous section, the 3FGL catalog
contains many sources that have been associated with emission observed at other wavelengths.
These sources, which are very unlikely to be dark matter subhalos, provide us with an
opportunity to test our procedure for identifying spatial extension. In order to make a fair
“apples-to-apples” comparison, we consider only those associated 3FGL sources that are
located at high latitude (|b| > 20�) and that emit a gamma-ray flux in the same range as our
12 subhalo candidates (10�9 cm�2 s�1 < F� < 4.24 ⇥ 10�9 cm�2 s�1). Of the 251 sources
that meet these criteria, 228 are associated with AGN, 16 with pulsars, six with galaxies,
and one with a globular cluster.

Following the approach described in the previous section, we have tested each of these
251 sources for evidence of (spherically symmetric) spatial extension. While we found that
none of these 251 sources exhibit as much evidence for extension as 3FGL J2212.5+0703,
the flat-spectrum radio quasar 3FGL J1310.6+3222 does prefer extension at a slightly lower
level, 2� lnL ' 19.4 (compared to 21.4 for 3FGL J2212.5+0703). Including this source, we
found that five of these 251 sources prefer extension at the level of 2� lnL > 10. In Fig. 3,
we present these results for a small sub-sample of these 251 sources. In the upper six frames
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Figure 4. The gamma-ray spectrum of 3FGL J2212.5+0703. The dashed curve denotes the spectral
shape predicted from a 30 GeV dark matter particle that annihilates to bb̄. Dark matter masses in
the range of 18.4-32.7 GeV provide a good fit to the measured spectrum.

a few or less, and we consider our estimate to represent a reasonable prediction (the au-
thors of Ref. [42], for example, arrive at a number of observable subhalos that is a factor
of a few lower than our estimate). For an annihilation cross section near the upper limit
derived from the observations of dwarf spheroidal galaxies [19, 20], we expect Fermi to de-
tect roughly one subhalo with Fthreshold > 10�9 cm�2 s�1, and perhaps as many as ⇠10 with
Fthreshold > 10�10 cm�2 s�1. If 3FGL J2212.5+0703 is in fact a dark matter subhalo (and
none of the other 11 subhalos candidates are), it would suggest an annihilation cross section
of �v ⇠ (0.12� 2.5)⇥ 10�26 cm3/s (90% CL, statistical uncertainties only). Of course, other
candidate sources could also be dark matter subhalos. In particular, several of the subhalo
candidates listed in Table 2 exhibit spectral shapes that are compatible with that observed
from 3FGL J2212.5+0703 (and from the Galactic Center excess). If any of these sources
are in fact subhalos, it would increase our estimate for the dark matter’s annihilation cross
section.

The gamma-ray flux and angular extent of 3FGL J2212.5+0703 can be used to constrain
the mass and distance of the corresponding dark matter subhalo. In the left frame of Fig. 5,
we plot the mass of a subhalo (prior to tidal stripping) that produces the gamma-ray flux
of 3FGL J2212.5+0703, as a function of distance. Here, we have assumed a dark matter
mass of 34 GeV and an annihilation cross section of �v = 2 ⇥ 10�26 cm3/s to bb̄.6 From
the flux alone, one cannot disentangle the mass of a subhalo from its proximity. From the
information contained in this plot, 3FGL J2212.5+0703 could equally well be a very large
subhalo (perhaps even an ultra-faint dwarf galaxy) located at a distance of ⇠10 kpc, or a
solar mass clump of dark matter located within a parsec or so of the Solar System.7

6The left frame of Fig. 5 can be adjusted to reflect any value of the cross section by shifting the distance
scale by a factor of [�v/(2⇥ 10�26cm3s�1)]1/2.

73FGL J2212.5+0703 is located within the region of the sky covered by the Sloan Digital Sky Survey

– 13 –
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Gaia DR2 search for subhalos

• No detection of dwarfs (subhalos) towards any of the 8 
unassociated sources


• Gaia DR2 should be sensitive to subhalos with pre-infall mass of 
>109 Msun within 20 kpc

A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources 3

for 3FGL J1924.8+1034 was chosen to reduce the contami-
nation from the field stars at low Galactic latitude. The addi-
tional 6 fields in Fermi-LAT Collaboration & Biteau (2018)
are also low Galactic latitude fields, and therefore we chose
1� field radius for these sources as well.

When searching for a dSph galaxy farther than d =
10 kpc away, we applied the same parallax filter used in
Antoja et al. (2015), namely, we discard stars for which
$��$ > 0.1mas, where $ represents the parallax and �$ is
the parallax uncertainty. This filter corresponds to eliminat-
ing stars located at a distance of less than 10 kpc within par-
allax uncertainties and aims to minimize contamination from
foreground stars. After these quality cuts, we are left with
17,747 and 125,891 stars in the fields of 3FGL J2212.5+0703
and 3FGL J1924.8+1034, respectively. For the additional 6
fields, we obtain 467,082, 61,091, 670,424, 120,156, 82,638
and 115,848 stars in the fields of FHES J1501.0�6310, FHES
J1723.5�0501, FHES J1741.6�3917, FHES J2129.9+5833,
FHES J2208.4+6443 and FHES J2304.0+5406, respectively.

We then used an Extreme-Deconvolution (XD, Bovy
et al. 2011) Gaussian Mixture Model (XDGMM, Holoien
et al. 2017) to perform density estimation on a four-
dimensional dataset comprised of the stellar position in
Galactic longitude and latitude, and the RA and DEC
proper motion measurements. Our aim is to detect a group
of stars with similar proper motions which are also concen-
trated on the sky. As XD has been proven to be a powerful
tool in estimating the noise-free underlying distributions of
astrophysically relevant quantities (Hogg et al. 2005; Bovy
et al. 2009, 2012), we have decided to use it for the cur-
rent purpose. XD allows us to assume Gaussian errors in
the Gaia DR2 proper motions and parallaxes (Hogg et al.
2005; Bovy et al. 2009, 2012) and also to take into account
the correlation between RA and DEC proper motions. We
do not take into account the measurement uncertainties in
the stellar position or correlations between the positions or
between positions and proper motions, because the uncer-
tainties in the position in the Gaia DR2 are very small. For
this analysis, we applied a small constant uncertainty of 0.�01
in the stellar positions for practical reasons, whose e↵ect is
small enough not to a↵ect our results.

Fig. 1 shows an example of the XD method applied
to a dSph galaxy of stellar mass of M⇤ = 5000 M�, half-
mass radius of rh = 50 pc, and moving at a velocity of
Vgal = 50 km s�1 at a distance of d = 10 kpc in the
search field of 3FGL J2212.5+0703. We constructed the
background stars using Galaxia (Sharma et al. 2011) in the
field of 3FGL J2212.5+0703. The stellar catalogue, repre-
sentative of a dSph galaxy, was made with SNAPDRAGONS

(Hunt et al. 2015) assuming an age of 12 Gyr, a metal-
licity of Z/Z� = 0.01, and a Salpeter initial mass func-
tion. The dSph galaxy’s dynamical properties were modelled
following a simple Plummer distribution with rh = 50 pc,
and an isotropic velocity distribution with a dispersion of
� = 10 km/s. We applied the expected Gaia DR2 uncertain-
ties at https://www.cosmos.esa.int/web/gaia/dr2 to the
data for both the dSph galaxy and field stars. In Fig. 1, we
see that XD can find the modelled dSph galaxy in proper
motion space. We found that an excessive number of com-
ponents in the XD does not penalise the detection of the
dSph (see also Anderson et al. 2017). However, it may result
in overfitting the data. We find that using K = 25 compo-
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Figure 1. Example of a clear detection of a cluster associated
with a dSph galaxy by applying the XD method to mock data.
We assumed a dSph galaxy with a stellar mass of M⇤ = 5000M� ,
a half-mass radius of rh = 50 pc, and moving at a velocity of
Vgal = 50 km s�1 at a distance of d = 10 kpc in the search field
of 3FGL J2212.5+0703. We used N = 6 components in the XD.
The left panel shows the the input stellar distribution in proper
motion space, compressed by a factor of 5. The right panel shows
the Gaussian components found by XD, including the cluster as-
sociated with the mock dSph galaxy centered at a proper motion
of (µ↵⇤, µ� ) ⇡ (�1, 2) mas yr�1.

nents is a good model for the most of the fields. However, for
the low Galactic latitude fields, we additionally used K = 50
for the fields of 3FGL J1924.8+1034, FHES J1501.0�6310
and FHES J2304.0+5406 and K = 100 for the field of FHES
J1741.6�3917. These numbers of components for each field
are determined to recover a dSph with our conservative stel-
lar mass limit, as discussed in Section 4.

For the search for a dSph galaxy located at distances d <
10 kpc, we employed a di↵erent parallax cut. The parallax
cut is dependent on distance, din, as: 1/(2din) < $ < 1.0/din
and changes as we are probing a distance range between 1.0
and 10 kpc in increments of din of 1 kpc up to 5 kpc, and
then 2 kpc up to 9 kpc. In addition, we applied a brighter
magnitude cut for 17, 18 and 19 mag for din = 1, 2 and
3 kpc cases, respectively, to use only the stars with better
parallax accuracy. A dSph in this distance range, whether
completely disrupted or not, will likely only be recovered
as a moving group with no discernible spatial overdensity,
due to its large angular extent. However, we found that this
does not penalise the XD search for a dSph. Hence, XD was
applied to both proper motion and a spatial distribution as
described above.

3 GAIA DR2 SEARCH FOR A DWARF
GALAXY

We applied XD to the samples of stars with d < 10 kpc and
d > 10 kpc, filtered as mentioned above, in the fields of 3FGL
J2212.5 + 0703, 3FGL J1924.8 + 1034, FHES J1501.06310,
FHES J1723.50501, FHES J1741.63917, FHES J2129.9 +
5833, FHES J2208.4 + 6443 and FHES J2304.0 + 5406. The
intensive XD search undertaken after a careful visual inspec-
tion of all the fields using TOPCAT (Taylor 2005) yielded no
evidence for a dSph in any of these fields. In the next section,
we provide our conservative detection limits for each field. In
this section, we provide examples of some interesting cases
that demonstrate the validity of our approach.
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